Текст уведомления здесь

Урожайности начальник и токсинов командир

Генно-модифицированная кукуруза оказалась безопаснее натуральной

За последние два десятилетия генетически модифицированная кукуруза стала на четверть более плодовитой, а содержание ядов плесневых грибов в ней значительно снизилось.
Добавить в закладки
Комментарии

Заметки про ГМО — это такой новый вид стихов про любовь. Все в этом жанре уже сказано давным-давно. Есть счастливые люди, убежденные, что любовь все победит и приведет человечество к светлому будущему, а есть угрюмые отрицатели этого чувства, сводящие его к низменным проделкам злобных нейромедиаторов и половых гормонов.

Так же и с генетически модифицированными организмами. Кто-то считает их панацеей от всех бед человечества, но еще большее число жителей Земли убеждены, будто биотехнологические компании внедряют ГМО только ради сокращения численности населения и прибыли на счетах. Пока противоборствующие стороны до мозолей на пальцах спорили в интернете, итальянские ученые ударно поработали и дали объективную оценку пользы и вреда генно-модифицированной кукурузы. Результаты своего труда они оформили в виде метаанализа и опубликовали его в научном журнале Scientific Reports.

Итальянцы проделали гигантскую работу, изучив результаты более 6000 научных публикаций о ГМ-кукурузе, вышедших с момента появления этого растения в 1996-м и по 2016-й включительно. Они оценили, как с годами менялась урожайность генно-модифицированной кукурузы, качество ее зерен, а также содержание в них токсинов, вырабатываемых паразитами растений. Эти параметры сравнили с аналогичными для кукурузы, чьи гены менялись не в результате человеческих действий, а при рекомбинации («перемешивании») во время полового размножения.

Плеснень Gibberella zeae на початке кукурузы. Фото: Scot Nelson / flickr / CC BY 2.0

Плеснень Gibberella zeae на початке кукурузы. Фото: Scot Nelson / flickr / CC BY 2.0

Метаанализ показал следующее. Урожайность (килограммов на гектар) генно-модифицированной кукурузы выше, чем у обычной. В зависимости от сорта ГМ-растения обгоняют своих немодифицированных собратьев по этому параметру на 5,6 — 25,4 процента. Кроме того, в ГМ-растениях этого вида сейчас на 28,8 процента ниже концентрация микотоксинов, на 30,6 процента — фумонизина и на 36,5 процента — трихотеценов. Под первым названием скрываются ядовитые вещества, производимые плесневыми грибами. Фумонизин и трихотецены — это разновидности микотоксинов. Они способны подавлять иммунитет человека и сельскохозяйственных животных, нарушать образование клеток крови и вызывать внутренние кровотечения. Получается, что генно-модифицированная кукуруза более безопасна, чем обычная: меньше риск отравиться грибными выделениями в результате ее поедания.

Противники ГМО часто обвиняют исследованную итальянцами кукурузу если не во вреде для здоровья, то по крайней мере в экономической бесполезности. Дескать, урожайность у нее не выше, чем у немодифицированной, так зачем тратить на ее создание деньги и время. Во-первых, мы уже убедились в том, что это неправда. А во-вторых, — и это самое забавное — никто не собирался менять кукурузе гены специально для большей продуктивности. Вообще-то, сейчас существуют только две группы сортов ГМ-кукурузы: устойчивые к насекомым-вредителям и устойчивые к гербицидам, то есть веществам, убивающим сорняки. Если урожайность у них и повысится, то не за счет более крупных и многочисленных початков, а за счет того, что обычных плодов будет пропадать меньше.

Так и получилось. Насекомые, пытавшиеся полакомиться устойчивой к ним кукурузой, погибали. А когда виды, которые сами по себе кукурузу не очень-то едят, «насильно» кормили ГМ-початками, ничего страшного с этими беспозвоночными, как правило, не происходило. Пострадали только невинные бракониды — насекомые, паразитирующие на вредителях, кукурузных огневках. Генно-модифицированные устойчивые к гербицидам растения не уничтожали своих зеленых собратьев, так что и они оказались безопасны для окружающей среды. Вдобавок ко всему стебли ГМ-кукурузы после сбора урожая разлагались в почве быстрее, чем-то, что осталось от немодифицированных растений этого вида.

Aleiodes indiscretus из семейства браконидов на гусенице непарного шелкопряда. Фото: Scott Bauer / Agricultural Research Service / wikimedia commons / CC0
Aleiodes indiscretus из семейства браконидов на гусенице непарного шелкопряда. Фото: Scott Bauer / Agricultural Research Service / wikimedia commons / CC0

Выводы из метаанализа итальянских биологов — весомый аргумент за выращивание ГМ-кукурузы. Они основаны на данных множества работ, выполненных независимыми коллективами ученых. Учитывая, что различные исследовательские группы получили сходные результаты, вероятность, что эти данные достоверны, весьма велика. Тут стоит отметить, что противники ГМО почти всегда в доказательство своей точки зрения приводят либо отдельные научные статьи (а не сотни и тысячи), либо и вовсе неопубликованные данные, проверить которые просто невозможно.

Конечно, людей, верящих в абсолютный вред от генетической модификации и не привыкших думать над транслируемой ими информацией, новые данные ни в чем не убедят. Но наша задача не в том, чтобы изменить чью-то точку зрения, а в том, чтобы предоставить читателям проверяемые факты.

Граждане, склонные сомневаться не в фактах, а в добросовестности окружающих, нередко считают, что биотехнологические компании держат ученых на цепи и затуманивают им сознание пси-волнами. Однако не всем известно, что первыми организмами, проводившими опыты по генной модификации растений для «народного хозяйства», были те, кому сознание никак не затуманить: у них его просто нет.

Этими чудо-инженерами были микробы рода Agrobacterium. Их в 2015 году обнаружили в 291 (!) сорте батата — тропического растения, чьи клубни внешне весьма похожи на обычную картошку, только во много раз слаще. Из батата там, где он встречается, делают множество блюд. Но 8000 лет назад, еще до того, как люди стали есть батат, это растение заселили микроорганизмы — и оставили в нем часть своих генов. Что самое интересное, в ДНК ближайших диких родственников батата следов бактерий нет. То есть Agrobacterium дали этому растению что-то такое, что способствовало его одомашниванию. Может быть, это был приятный вкус, понравившийся древним людям, а может, особо крупные клубни, которые было легко выкапывать. Выходит, что многие века Homo sapiens ели ГМО и не умирали от него, и даже не болели! Да и экосистемы, в которых жил и живет генно-модифицированный батат, функционируют вполне неплохо. Что это, если не доказательство того, что ГМО — это вкусно и полезно?

И дело не только во вкусе. Сейчас активно исследуют возможность создавать в растениях вакцины и препараты против злокачественных опухолей. Как будет здорово: съел помидор — и не надо делать болезненный укол, и не нужны курсы химиотерапии! И это не научная фантастика ближнего прицела. Клинические исследования таких препаратов уже идут, а некоторые и вовсе давно завершены. Шпинат «учили» производить вакцину от вируса бешенства, картофель — от гепатита B, а кукурузу — от агрессивной кишечной палочки.

Из самого нового: в начале 2017 года проводились испытания «выращенных» в ГМ-растениях вакцин против неходжкинской лимфомы и некоторых других видов рака на людях-добровольцах. Закончатся они, скорее всего, еще в нынешнем десятилетии. И тогда мы в очередной раз посмотрим, что же для жизни безопаснее — есть ГМО или болеть раком.

Добавить в закладки
Комментарии
Вам понравилась публикация?
Расскажите, что вы думаете, и мы подберем подходящие материалы

Исправляя А-Т на Г-Ц

Создан инструмент корректирования генома по буквам

Редактирование геномов на базе системы CRISPR-Cas9 продолжает свое триумфальное вторжение в нашу жизнь. На наших глазах рождается технология точечного редактирования оснований — отдельных букв нашего генома. Возможно, именно ей предстоит стать основной рабочей лошадкой медицинской генетики будущего.
Добавить в закладки
Комментарии

Грубо говоря, жизнь — это воспроизведение неточно самокопирующихся систем. И неточность тут так же важна, как и копирование: ошибки наследования делают живые организмы разными, а значит дают кому-то из них шанс на «апгрейд» приспособленности к условиям окружающего мира, постоянно подбрасывая эволюции новый материал для отбора. Но то, что хорошо для живого в целом, не всегда хорошо для конкретного организма — особенно если он обременён разумом и амбициями.

Изменчивость, в особенности мутационная, частенько наделяет нас помимо нашей невыносимой неповторимости ещё и некоторыми наследственными заболеваниями. Особенно заметно это на примере точечных мутаций, которыми в основном и отличаются друг от друга наши геномы.

Перед тем, как продолжить, давайте устроим себе короткий экскурс в молекулярную биологию. Каждая из двух цепей спирали ДНК состоит из нуклеотидов. Самая важная для хранения информации часть нуклеотида — его азотистое основание. Всего этих оснований четыре штуки: аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Эти основания из двух разных цепей развёрнуты к центру двойной спирали, где аденин дополняет тимин (и наоборот), образуя с ним пару А-Т; подобные же отношения связывают и гуанин с цитозином, формирующих пару Г-Ц. Именно этой азбукой и записывается информация об аминокислотной последовательности всех белков нашего организма.

В коллаже использованы иллюстрации chromatos / Фотодом / Shutterstock
В коллаже использованы иллюстрации chromatos / Фотодом / Shutterstock

[ ... ]
Читать полностью

Светлое будущее

Оптогенетика для чайников

15 лет назад ученые приблизились к созданию лабораторного «светового оружия»: оказывается, можно научить клетки реагировать на свет и управлять ими с помощью фонаря. Попробуем разобраться в том, чем удобны оптогенетические методы и как бактерии помогли ученым лечить больных диабетом мышей с помощью смартфона.
Добавить в закладки
Комментарии

Точность — вежливость королей

Чем дальше развивается медицина, тем сильнее она стремится к точному и целенаправленному воздействию на организм. Старые добрые методы вроде кровопускания или ртути остаются в прошлом, в современном мире стоит задача действовать избирательно на конкретные группы клеток. Например, заставить выделять инсулин клетки поджелудочной железы (и только их, а не клетки, скажем, глаза или кости). Или стимулировать определенный участок головного мозга. Такие же вопросы стоят и перед исследователями, изучающими конкретные процессы в организме или в сложных клеточных культурах. Чем точнее мы учимся управлять физиологией выбранных групп клеток, тем понятнее, как именно эти клетки работают и кто из них участвует в развитии заболеваний.

Уже довольно долго эти задачи решаются либо с помощью веществ, действующих только на определенные типы клеток (но не в каждом случае их удается подобрать), либо путем генной инженерии. Можно «кормить» клетки дополнительной генетической информацией и заставлять их производить нетипичные для них белки или, наоборот, выключать уже работающие в клетках гены. Однако ни один из методов не позволяет контролировать происходящее. Например, не получается резко прекратить воздействие на клетки, если что-то пошло не так; не всегда удается дозировать сигнал, варьировать его во времени и пространстве и исключать побочные эффекты. А хотелось бы уметь встраивать в клетки какой-то выключатель и активировать его с помощью стимула, безопасного как для самих клеток, так и для их окружения. Такой стимул придумали в 2002 году — им оказался свет.

Я вижу свет! [ ... ]

Читать полностью
Фрагмент Королевских ворот в Хаттусу, столицу Хеттской империиStylone / Фотодом / Shutterstock

Бронзовый коллапс, или Куда делись все эти люди

Чем был вызван кризис средиземноморских цивилизаций три тысячи лет назад

В конце второго тысячелетия до нашей эры в Греции и на Ближнем Востоке — в Месопотамии, в Древнем Египте, в Сирии, в Малой Азии — творились очень странные дела. Великие царства бронзового века одно за другим уходили в небытие, из ниоткуда появлялись новые народы, хроники повествовали о нашествиях, голоде и прочих бедствиях. Историки долго предпочитали винить во всем «народы моря», но теперь, благодаря археологическим данным, полученным в последние годы, у нас, кажется, есть основания иначе отвечать на вопрос, кто виноват в коллапсе «бронзовых» цивилизаций.
Добавить в закладки
Комментарии

Как рассказывает профессор Эрик Клайн из Университета Джорджа Вашингтона, директор Капитолийского археологического института, автор книги «1177 BC: The Year Civilization Collapsed», Средиземноморье позднего бронзового века представляло собой мир, очень похожий на современный, — глобализованное пространство с торговыми нитями, опутавшими всю ойкумену, то есть все страны, составлявшие на тот момент европейскую цивилизацию.

Торговые и культурные связи второго тысячелетия до нашей эры обеспечивали единый высокий технологический уровень городов Греции и Ближнего Востока во всем: в кораблестроении, в архитектуре, в обработке металлов. Чтобы показать протяженность и устойчивость торговых путей бронзового века, достаточно сказать, что олово для выплавки бронзовых изделий поступало, скорее всего, из Афганистана, а медь брали на Кипре.  Города были оснащены системами водоснабжения, инженерный уровень которых античным грекам тысячу лет спустя и не снился.

Все это откатилось назад со страшной скоростью в кратчайшие по меркам истории сроки, чтобы сбросить с древнего мира бронзовый век и позволить ему войти в новый век — железный, в ту историю, которую мы изучаем в школе.

За относительно короткое время — в древнеегипетских надписях зафиксирован промежуток от 1207 до 1177 года до нашей эры — весь прекрасный бронзовый мир растворяется. Торговые связи рушатся. Из известных нам царств бронзового века в более-менее нетронутом виде остается Египет, который теряет контроль над Сирией и Палестиной. Вавилон и Ассирия сохраняют разве что локальное значение. Исчезает микенская цивилизация. Разрушена Троя. [ ... ]

Читать полностью