Текст уведомления здесь

Ренессанс сверхзвука

Когда гражданские самолеты вновь преодолеют звуковой барьер

Прошло меньше 15 лет со дня завершения эксплуатации последнего коммерческого сверхзвукового пассажирского самолета, «Конкорда». 24 октября 2003 года его полеты были прекращены. Казалось, что в истории гражданского сверхзвука поставлена жирная точка. Однако в последнее время в прессе вновь появляются новости и предложения о возобновлении разработок в области сверхзвуковой пассажирской авиации. Что это? Создатели этих проектов плохо знают историю, или мир изменился, и новые технологии позволят вернуть мечту о полетах, обгоняющих звук?
Добавить в закладки
Комментарии

Пронзая воздух

Впрочем, обо всем по порядку. Впервые звуковой барьер преодолел американский летчик-испытатель Чак Йегер на экспериментальном самолете Bell X-1 (с прямым крылом и ракетным двигателем XLR-11). Это случилось семьдесят с лишним лет назад — в 1947 году. Ему удалось разогнаться быстрее скорости звука, направив самолет в пологое пикирование. Спустя год это же удалось и советским летчикам-испытателям Соколовскому и Федорову на экспериментальном, существовавшем в единственном экземпляре истребителе Ла-176.

Bell X-1, на котором Йегер преодолел сверхзвуковой барьер. Фото: NASA

Bell X-1, на котором Йегер преодолел сверхзвуковой барьер. Фото: NASA

Это были сложные для авиации времена. Летчики буквально по крупицам собирали опыт, каждый раз рискуя жизнями, чтобы узнать, возможны ли полеты на скоростях выше одного Маха. Флаттер крыла, волновое сопротивление унесли не одну жизнь, до того как конструкторы научились бороться с этими явлениями.

Все дело в том, что при преодолении скорости звука резко возрастает аэродинамическое сопротивление и растет кинетический нагрев конструкции от трения набегающего воздушного потока. Кроме того, в этот момент фиксируется смещение аэродинамического фокуса, что ведет к утрате устойчивости и управляемости самолета.

Шлирен-съемка крыла, обтекаемого воздушным потоком на скорости, близкой 1 М. / NASA
Шлирен-съемка крыла, обтекаемого воздушным потоком на скорости, близкой 1 М. / NASA

Спустя 12 лет серийные сверхзвуковые истребители МиГ-19 уже охотились за американскими самолетами-шпионами, а еще ни один гражданский самолет не попытался превысить скорость звука. Это произошло лишь 21 августа 1961 года: пассажирский самолет Douglas DC-8, упав в пике, разогнался до 1,1 Маха. Полет был экспериментальным, с целью собрать больше информации об поведении машины на таких скоростях.

Спустя еще некоторое время в воздух поднялись советский Ту-144 и британо-французский «Конкорд». Практически одновременно: наша машина чуть раньше, 31 декабря 1968 года, а европейская — в марте 1969-го. А вот по объему перевезенных пассажиров за все время эксплуатации моделей капиталисты нас сильно перещеголяли. Если на счету Ту-144 всего чуть больше 3000 пассажиров, то «Конкорды», работая до 2003 года, перевезли более 2,5 миллиона человек. Впрочем, и это не помогло проекту. В конечном счете он был закрыт, очень некстати оказалась и громкая катастрофа под Парижем, в которой никакой вины сверхзвукового самолета не было.

Одни из первых снимков близнецов гражданского сверхзвука: Ту-144 (сверху) и «Конкорд» (снизу). Фотохроника ТАСС

Одни из первых снимков близнецов гражданского сверхзвука: Ту-144 (сверху) и «Конкорд» (снизу). Фотохроника ТАСС

Три ответа «нет»

В качестве железной причины бесперспективности коммерческих сверхзвуковых самолетов обычно приводятся три довода — слишком дорого, слишком сложно, слишком громко. И действительно, каждый, кто наблюдал полет реактивного сверхзвукового военного самолета, никогда не забудет ощущение удара по ушам и того дикого грохота, с которым мимо тебя пролетает самолет на сверхзвуке .

К слову, звуковой удар это не одномоментное явление, он сопровождает самолет по всему пути следования, все время, когда скорость летательного аппарата выше скорости звука. Сложно спорить и с тем, что топлива реактивный самолет потребляет столько, что, кажется, проще его сразу заправлять банкнотами.

Говоря о современных проектах сверхзвукового пассажирского самолета в первую очередь нужно ответить на каждый из этих вопросов. Только в этом случае можно надеяться на то, что все существующие проекты окажутся не мертворожденными.

Звук

Конструкторы решили начать со звука. За последние годы появилось много научных работ, доказывающих, что определенная форма фюзеляжа и крыльев может снизить количество ударных волн, создаваемых самолетом, и уменьшить их интенсивность. Подобное решение потребовало полной переработки корпусов, многократной компьютерной проработки моделей и нескольких тысяч часов продувки будущих самолетов в аэротрубе.

QeSST в полете, художественное изображение. Изображение: NASA

QeSST в полете, художественное изображение. Изображение: NASA

Основные проекты, работающие над аэродинамикой самолета будущего, это QueSST от специалистов из NASA и японская разработка D-SEND-2, создаваемая под эгидой местного Агентства аэрокосмических исследований JAXA. Оба эти проекта ведутся уже несколько лет, планомерно подбираясь к «идеальной» для сверхзвуковых полетов аэродинамике.

Предполагается, что новые сверхзвуковые пассажирские самолеты будут создавать не резкий и жесткий звуковой удар, а гораздо более приятные уху мягкие звуковые пульсации. То есть будет, конечно, все равно громко, но не «громко и больно». Еще одним способом решения проблемы звукового барьера стало уменьшение размеров самолета. Почти все разработки, ведущиеся в настоящее время, — это небольшие летательные аппараты, способные на перевозку 10—40 пассажиров максимум.

Однако есть и в этом вопросе компании-выскочки. В сентябре прошлого года бостонская авиакомпания Spike Aerospace объявила о том, что у них уже практически готова модель сверхзвукового пассажирского самолета S-512 Quiet Supersonic Jet. Предполагается, что летные испытания начнутся уже в 2018 году, а первый самолет с пассажирами на борту стартует не позже конца 2023 года.

Еще более дерзким оказалось заявление создателей, что со звуком проблема практически решена и первые испытания покажут это. Думается, что специалисты из NASA и JAXA, потратившие на решение этой проблемы много лет, будут следить за испытаниями более чем внимательно.

Также существует еще одно интересное решение проблемы звука — это преодоление звукового барьера самолетом при практически вертикальном взлете. В таком случае действие ударных волн окажется слабее, а после набора высоты в 20—30 тысяч метров об этой проблеме можно будет забыть — слишком далеко от Земли.

Двигатели

Работа над двигателями для будущих сверхзвуковых самолетов тоже не прекращается. Даже дозвуковые двигатели за последние годы смогли прилично прибавить в мощности и экономичности за счет внедрения специальных редукторов, керамических материалов и введения дополнительного воздушного контура.

Со сверхзвуковыми самолетами все немного сложнее. Дело в том, что при современном уровне технологического развития турбореактивные двигатели способны достигать максимальной скорости в 2,2 Маха (около 2500 километров в час), для достижения же большей скорости требуется использовать прямоточные двигатели, способные разогнать летательный аппарат до гиперзвуковых скоростей (более 5 чисел Маха). Впрочем, это — пока что — скорее фантастика.

По словам разработчиков, им удается уже в настоящее время достигнуть себестоимости полета на 30 процентов меньшей, чем у «Конкорда», даже при небольшом количестве пассажиров. Такие данные обнародовал стартап Boom Technologies в 2016 году. По их мнению, билет по маршруту Лондон—Нью-Йорк будет стоить около $ 5000, что сопоставимо с ценой за билет при полете первым классом на обычном, дозвуковом самолете.

Продув модели XB-1 в аэродинамической трубе. Источник: youtube.com
Продув модели XB-1 в аэродинамической трубе. Источник: youtube.com

В прошлом году именно Boom Technologies уже показали свой прототип под названием XB-1 Baby Boom, напоминающий скорее военный истребитель, нежели пассажирский самолет. Его длина чуть больше 20 метров, размах крыльев — 5,2 м, максимальная взлетная масса — 6100 кг. Самолет оснащен тремя турбореактивными двигателями General Electric J85−21 с тягой 1588 кгс каждый.

Овчинка и ее выделка

В настоящее время над созданием сверхзвукового пассажирского самолета работает более десяти различных стартапов и групп разработчиков, зачастую получая финансирование от очень уважаемых в авиационном мире компаний. Но зачем? Зачем нужно летать на сверхзвуке — кроме возможности тратить на перелет на несколько часов меньше?

Дело в том, что авиационное пространство в настоящее время достаточно загружено. А сверхзвуковые самолеты можно пускать за счет их конструкции значительно выше большинства используемых эшелонов, на высоте около 20 000 метров. Это требует меньше времени и сил на управление воздушным движением, а также позволит пускать их по более спрямленным маршрутам, в отличие от устоявшихся аэротрасс. Кроме того, сопротивление воздуха на такой высоте ниже, что положительно скажется и на топливной эффективности будущих сверхзвуковых самолетов.

Так что, скорее всего, первые демонстраторы технологий мы сможем увидеть уже в ближайшие 3—5 лет, а если все пойдет гладко, то — потихоньку копить на билет, приготовившись к перелету во второй половине двадцатых годов. Кроме всего, разработчики обещают, что это будет не так и дорого.

Добавить в закладки
Комментарии
Вам понравилась публикация?
Расскажите, что вы думаете, и мы подберем подходящие материалы

Печальная история «Науки»

Филипп Терехов — о судьбе последнего в своем роде модуля МКС и его будущем

В феврале этого года космонавты Александр Мисуркин и Антон Шкаплеров начнут подготовку российского сегмента Международной космической станции к встрече модуля «Наука», который уже второй раз выходит на финишную прямую перед запуском. В прошлый раз — в 2013 году — его успели собрать и отправить на испытания, где обнаружилось загрязнение в двигательной системе. На устранение замечаний и переборку ушли годы. По просьбе «Чердака» о долгой и немного печальной истории модуля, который не может отправиться в космос уже больше двух десятилетий, рассказывает Филипп «lozga» Терехов.
Добавить в закладки
Комментарии

Приключения транспортного корабля снабжения

В 1960-х в СССР разрабатывалась военная орбитальная станция «Алмаз». Главной задачей ее экипажей должно было стать фотографирование Земли. Отснятую пленку требовалось возвращать с орбиты, но корабль «Союз» мог перевозить очень небольшое количество груза. Поэтому разработчик станции, ОКБ-52 решило заодно создать универсальный корабль, который мог бы не только доставлять на орбиту большие объемы груза, но и возвращать на Землю экипажи вместе с километрами отснятой пленки. Корабль назвали ТКС — «транспортный корабль снабжения».

Поскольку на орбиту корабль собирались выводить на ракете «Протон», которая может поднять целых двадцать с небольшим тонн, у конструкторов появилась возможность реализовать красивое и эффективное решение: ТКС состоял из двух блоков, возвращаемого аппарата (ВА) и функционально-грузового блока (ФГБ). Особенность последнего заключалась в том, что такие блоки могли служить «кирпичиками» для орбитальных станций. Эти серийно изготавливаемые модули можно было просто добавлять к станции, присоединяя или меняя модули по желанию и/или необходимости (отдаленно похожую идею реализовали на МКС и американцы, когда шаттлы возили MPLM). Это фактически и определило будущее всего проекта: после испытаний возвращаемого аппарата (кстати, они были рассчитаны на многоразовое использование, и два экземпляра совершили по два полета) и тестового автономного полета ТКС-1 (он же «Космос-929») ТКС отправился к станции «Салют-6». Космонавтов на ней уже не было, но аппарат успешно пристыковался, продемонстрировав возможность расширять орбитальные станции за счет новых модулей. Третий ТКС был запущен к станции «Салют-7» и проработал в ее составе с марта по сентябрь 1983 года. Четвертый (и последний) корабль отправился к «Салюту-7» в 1985 году.

Модель функционально-грузового блока (ФГБ, левая часть конструкции) возвращаемого аппарата (ВА) и система аварийного спасения (САС). Фото: Stefanwotzlaw / wikimedia commons / CC BY-SA 3.0
Модель функционально-грузового блока (ФГБ, левая часть конструкции) возвращаемого аппарата (ВА) и система аварийного спасения (САС). Фото: Stefanwotzlaw / wikimedia commons / CC BY-SA 3.0

[ ... ]
Читать полностью

Космическая лихорадка

Насколько реальны планы добывать полезные ископаемые в космосе

Если посмотреть промо-ролики «космошахтерских» компаний Planetary Resources или Deep Space Industries, создается впечатление, что это реклама компьютерной игры: красивая графика и фантастический сюжет про добычу в космосе полезных ископаемых. «Чердак» разбирается, что в проектах извлечения прибыли из разработки недр астероидов пока остается полной фантастикой, а что уже приобретает реальные черты.
Добавить в закладки
Комментарии

Почем астероид?

Рассуждать, сколько всего ценного можно добыть на астероидах, — задача приятная и увлекательная, поскольку цифры получаются астрономические, а подсчеты за нас уже провел Ян Уэбстер, создатель сайта Asterank (ныне принадлежит Planetary Resources). Он уже рассчитал приблизительную ценность недр тысяч астероидов и примерную стоимость их разработки с поправкой на то, насколько доступен тот или иной астероид для миссий с Земли. Самым экономически выгодным, по его расчетам, является астероид Рюгу — тот содержит никеля, кобальта, железа и воды на $ 83 миллиарда, а его разработка может принести до $ 30 миллиардов чистой прибыли. В этом году до него как раз должен долететь японский космический аппарат «Хаябуса-2».

Художественное изображение «Хаябусы-2» и астероида Рюгу / ISAS / JAXA
Художественное изображение «Хаябусы-2» и астероида Рюгу / ISAS / JAXA

Из чего состоят астероиды, с Земли можно установить по спектру света, который они отражают. Особенно интересны с точки зрения содержания воды, редкоземельных элементов и платиноидов астероиды, состоящие из углистых хондритов. Однако спектральный анализ, конечно, не абсолютно точен. [ ... ]

Читать полностью

«Было бы интересно сделать скафандр для погружения в Марианскую впадину»

Интервью с научным руководителем проекта по созданию системы самостоятельного жидкостного дыхания

Наглядная демонстрация российской разработки жидкостного дыхания всколыхнула интернет и соцсети. Часть аудитории возмущается негуманным «утоплением» таксы, а другая часть считает, что публику обманули, выдав кратковременное погружение на задержке дыхания за несуществующую технологию. Но на самом деле жидкостное дыхание — реальная разработка. «Чердак» поговорил с научным руководителем советского проекта и главным российским разработчиком системы самостоятельного жидкостного дыхания Андреем Филиппенко.
Добавить в закладки
Комментарии

— Как и когда начались исследования в области жидкостного дыхания?

— Исторически интерес возник еще в начале ХХ века. Тогда медики использовали солевой раствор, чтобы понять, насколько растяжимы легкие человека. Сегодня наполнение легких физиологическим раствором изучают студенты в курсе медицины. Но, конечно, это имеет мало отношения к жидкостному дыханию. По-настоящему все началось с 1962 года, когда Иоганн Килстра и его коллеги из Лейденского университета и голландского военно-морского флота опубликовали в журнале ASAIO (American Society of Artificial Internal Organs) Journal знаменитую статью «Мыши как рыбы» (Of mice as fish). В их эксперименте мыши, погруженные в буферный солевой раствор, дышали на протяжении 18 часов, извлекая кислород из жидкости с помощью легких. Правда, тут есть одна важная деталь. Вода при обычном атмосферном давлении и нормальной температуре способна растворить около 3% кислорода по объему, и этого хватает рыбам, но не млекопитающим, которые привыкли к содержанию кислорода около 20% (то есть парциальное давление кислорода составляет 0,2 атм). Мыши находились под давлением в восемь атмосфер, поэтому кислорода им вполне хватало (при большем давлении можно даже не полностью насыщать раствор кислородом). Правда, возврат обратно к дыханию воздухом оказался проблемой — мыши при этом гибли, но именно эта работа дала серьезный толчок научным исследованиям в этой области.

Андрей Филипенко. Фото: Егор Быковский

Андрей Филипенко. Фото: Егор Быковский

…те, кто говорит: «Дышать солевым раствором нельзя — он смывает сурфактанты!» — в общем-то, совершенно правы.

[ ... ]
Читать полностью