Текст уведомления здесь

Как магия викингов оказалась физикой

Считалось, что «солнечный камень» из скандинавских саг — это просто мифический предмет. Но он существует — и работает

Викинги видели солнце сквозь облака с помощью описанного в сагах солнечного камня. С его помощью они прокладывали путь через океан. Как именно это им удавалось, ученые не могли разобраться несколько десятилетий. Путь исследователей к разгадке секрета солнечного камня оказался не менее извилистым, чем путь викингов к Гренландии. Зато теперь каждый может за несколько минут соорудить древний навигационный девайс.
Добавить в закладки
Комментарии

Из меди, из дуба грудь

Насколько викинги были хороши в море, поможет понять такой пример. Римляне, столетиями державшие в своей власти почти весь цивилизованный мир, боялись плавать в открытом море. Гораций выразил ужас своего народа перед самой идеей мореплавания в знаменитых стихах:

«Знать, из дуба, из меди грудь

Тот имел, кто дерзнул

Первым свой хрупкий челн

Вверить грозным волнам».

Не только римляне были такими пугливыми: финикийцы считаются непревзойденными мореходами древности, но их знаменитый заплыв около 600 года до н.э. был каботажным — вокруг Африки. Пифей, якобы побывавший в IV веке до нашей эры в Исландии, скорее всего, просто пересказал известные ему мифы и сказки — во всяком случае, за ним уже в древности закрепилась репутация фантазера. Писатель Лукиан (II век н.э.) начинает фантастический рассказ «Правдивая история» с того, что корабль уносит в море и тот теряет берега. Для человека древности эта ситуация была равнозначной переходу в потусторонний мир. И этому было основание: оттуда, из-за моря, не возвращались.

Теперь взглянем на викингов: бородатые мореходы плывут через Атлантику, словно перешагивая через лужу.

Схема: Анатолий Лапушко / Chrdk.

Схема: Анатолий Лапушко / Chrdk.

Как викинги плавали в Гренландию?

Если верить сагам, от Норвегии до Исландии викинги добирались за семь суток, еще четверо суток требовалось для перехода из Исландии к Гренландии. Все те же древние тексты гласят, что Гренландию открыл Эрик Рыжий в 985 году, хотя в сказании подчеркивается, что какие-то глухие слухи о «земле, покрытой льдом», циркулировали и ранее. Эрик с 15 судами достиг южного берега острова и основал там поселение Братталид. В наши дни реконструкторы подтвердили реальность этих рассказов, проделав путь викингов на копиях старинных судов. На острове сохранились следы поселений викингов — остатки поселений, руины замков. Хроники говорят, что колония викингов на острове была весьма многочисленной. Согласно свидетельствам, тут заключали браки, торговые сделки, казнили уличенных в колдовстве — в общем, жили полноценной жизнью.

Но как они ориентировались? Непонятно, был ли у викингов компас, но, так или иначе, на севере он практически бесполезен. Магнитный полюс — точка, где силовые линии магнитного поля Земли входят внутрь планеты под прямым углом, — близко, и стрелка компаса, ориентируясь вдоль силовой линии, уже за пару сотен километров от полюса смотрит, по сути, вниз.

Более того, во времена викингов магнитный полюс, который «гуляет» по поверхности Земли, находится чуть западнее Гренландии. Стало быть, как минимум половину пути от Исландии к Гренландии компас был бесполезен. К этому добавляется буйство стрелки во время магнитных бурь: эффект выражен тем ярче, чем ближе вы к магнитному полюсу. «Перед пазорями матка дурит», — говорили архангельские поморы, называвшие «пазорями» полярные сияния (их появление как раз говорит о магнитной буре), а стрелку компаса — «маткой».

Схема: Анатолий Лапушко / Chrdk.

Схема: Анатолий Лапушко / Chrdk.

Если нет компаса, остается ориентироваться по солнцу и Полярной звезде. Полярная звезда прямо указывает на север. Солнце в полдень находится над точкой юга. В другие моменты положение юга (а значит, и севера), наблюдая солнце, несложно определить с помощью солнечных часов. Такие устройства находили и на кораблях викингов.

Простой пример. За час солнце, как и все светила, смещается на 15 градусов из-за вращения Земли вокруг оси. Следовательно, в 11 часов солнце, например, находится на 15 градусов восточнее точки юга. Если мы знаем время, мы можем взять солнечные часы, поместить тень солнца на 11 часов, и цифра 12 покажет на юг. Но как узнать время? Только приблизительно. Не солнечных, например песочных, часов у викингов не было. Поэтому исследователи сходятся на том, что у викингов (как и вообще у людей в Средние века) было развито чувство времени. Якобы даже в пасмурные дни, ориентируясь на освещенность, они могли определить время с точностью до часа.

Но что если солнца не видно? Это для высоких широт актуальная проблема. Так, на Фарерских островах 220 дней в году — полная облачность, и только 2 дня в году полностью ясные. Часто не видно ни солнца, ни Полярной звезды. И, даже зная время, ты сориентироваться не сможешь. Солнца нет, значит, мы не можем поместить тень «стрелки» солнечных часов на нужный сектор и узнать направление на юг.

Тем не менее викинги ориентировались и в облачные дни, и секрета своего не таили. Открываем сагу о св. Олафе. «Погода была облачная, шел снег. Святой Олаф […] попросил Сигурда сказать ему, где солнце. Сигурд взял солнечный камень, посмотрел на небо и увидел, откуда пришел свет. Так он выяснил положение невидимого солнца».

Теперь-то мы знаем, что здесь описана процедура так, как она и выглядела в реальности. Когда вы дочитаете до конца этот текст, вы сами научитесь видеть сквозь облака. Но историки думали, что это сказка. Мало ли в сагах магических предметов.

Кадр из сериала «Викинги», где Рагнар Лодброк показывает брату солнечный камень. Источник: youtube
Кадр из сериала «Викинги», где Рагнар Лодброк показывает брату солнечный камень. Источник: youtube

В 1967 году датский археолог Торкилд Рамскоу (Thorkild Ramskou) предположил, что солнечный камень — это кристалл исландского шпата. Ученый обратил внимание на удивительные оптические свойства этого минерала. Он позволяет разделять «просто свет» и поляризованный свет. Последний и помогал отыскивать на небе солнце, предположил Рамскоу. Исландский шпат в изобилии находят на пляжах Норвегии и Исландии — подбирай и пользуйся.

Хотя Рамскоу оказался абсолютно прав и его работу часто упоминали в популярной литературе, никто не сделал даже попытки проверить, годится ли исландский шпат на роль навигационного прибора, а главное, не объяснил, как это в точности работает. Сам Рамскоу, археолог, а не физик, технологию восстановить не смог. Возможно, печальную роль сыграло то, что его статья была опубликована по-датски. К тому же физики априори не верят специалистам из других дисциплин. Что археолог понимает в поляризации?

Все изменилось в конце 90-х, когда у побережья Олдерни (Нормандские острова) нашли затонувший около 1592 года корабль. А на его борту — исландский шпат, лежавший рядом с навигационными инструментами. Конец XVI века, конечно, не времена викингов. Тем не менее, что делает здесь этот камушек? Эта находка уже всерьез заставила физиков присмотреться к свойствам исландского шпата. Свойства, конечно, были известны, но только не в применении к прикладной задаче — ориентированию.

В 2011 году появилась статья коллектива исследователей, которые, обосновав теоретически и проверив экспериментально несколько способов ориентирования с помощью исландского шпата, остановились на одном (его мы опишем ниже). А в 2013 году вышло комплексное исследование, где досконально изучен и сам кристалл, найденный археологами в обломках кораблекрушения, а главное, объяснено, что он делал на корабле Елизаветинской эпохи. Оказывается, пушки, стоявшие на судне, отклоняли стрелку компаса. Компенсировать это отклонение тогда не умели. Вот и пригодился магический камень из скандинавских саг.

С тех пор мало кто сомневается, что викинги пользовались для ориентирования исландским шпатом. Хотя кое-где продолжают звучать сомнения: мол, способ сложный, вряд ли «волосатые дикари» до него додумались. Автор этих строк сделал аналог прибора викингов и убедился: все очень просто. Сделайте такой и вы. Но сначала разберемся, как это работает.

Раздвоение реальности

Возьмите в руки кристалл исландского шпата (в любом интернет-магазине он стоит 200−300 рублей). Вроде ничего примечательного. Стекляшка и стекляшка.

Теперь посмотрите сквозь него на окружающий мир. Странно, но все предметы выглядят раздвоенными. Усложним опыт. Возьмите лазерную указку и пропустите лазерный луч сквозь кристалл. Чудо! В кристалл входит один луч, а выходит два. Причем вышедшие из камня лучи не расходятся — так и идут параллельно. Расстояние между ними около 4−5 мм, этот параметр называется ход. Запомним этот термин.

В 1669 году исследователь Расмус Бартолин, обнаруживший странное поведение света в кристалле, был поражен не меньше вашего. Это явление называется двойное лучепреломление. Один пучок света именуется обыкновенным, другой — необыкновенным. Напоминает инструкцию к набору «Фокусы для школьников», но, как ни странно, это научные термины. Обыкновенный свет проходит сквозь кристалл, как сквозь стекло. А необыкновенный отклоняется от него на расстояние хода.

Чем же они отличаются? Дело в том, что необыкновенный луч — поляризованный. Кристалл исландского шпата выявляет в пучке света поляризованную компоненту и отделяет ее. Он сортирует свет, как магнит сортирует твердое вещество. Если прислонить магнит к смеси песка и железных опилок, он опилки возьмет, а на песчинки не обратит внимания.

Что такое поляризация?

Все помнят, что свет — это волна. Продвинутые читатели добавят, что он еще и набор фотонов, но для нашей цели это лишнее замечание. Выйдите на берег моря и посмотрите на волны. Кажется очевидным, что волны колеблются в некой плоскости (в плоскости поверхности моря). Но не таков свет. Он колеблется сразу во всех плоскостях. Из этого правила есть исключение. Если свет поляризованный, он колеблется в какой-то одной плоскости. Как морские волны. Собственно, поляризация — это и есть свойство колебаться не во всех плоскостях сразу, а в какой-то одной. В природе поляризованный свет образуется при отражении и рассеянии. Например, свет, отраженный от мокрого асфальта, сильно поляризован. Именно поэтому водителям сразу после дождя так неприятно вести машину: наши глаза не любят поляризованного света. Частично поляризован и свет голубого неба — из-за рассеяния на атомах кислорода. Это крайне важно для нас, и мы про это еще будем говорить.

Как кристалл разделяет свет? Окончательно это стало понятно лишь в конце XIX века, когда Джеймс Максвелл сформулировал свои уравнения. Понимаю, при словах «уравнения Максвелла» у многих возникает непреодолимое желание под благовидным предлогом выйти. И вернуться, когда в статье снова появятся викинги. Но потерпите еще немного.

Максвелл доказал, что фазовая скорость света в среде (воздухе, воде, везде) зависит от диэлектрической проницаемости этой среды. А что если среда устроена так, что ее диэлектрическая проницаемость меняется в зависимости от вектора колебаний луча? Именно таков исландский шпат. В нем диэлектрическая проницаемость есть тензорная величина. Такой кристалл замедлит пучки света с ярко выраженной «модой» (преобладанием) одной плоскости колебаний над другой. А это и есть поляризованный свет! В природном кристалле решетка устроена так, что более медленный луч получает иную траекторию. Можно подобрать такую толщину кристалла, когда траектория будет одна (луч не будет раздваиваться), но пучок света, покидающий камень, окажется поляризован так, как нужно исследователю. На этом принципе работают коммерческие поляризационные фильтры: их используют фотографы, чтобы устранить блики.

Исландский шпат. Фото: ArniEin / wikimedia commons / CC BY-SA 3.0

Исландский шпат. Фото: ArniEin / wikimedia commons / CC BY-SA 3.0

Поляризация ведет к полюсу

Свет голубого неба довольно сильно поляризован из-за рассеяния на атомах кислорода. Степень поляризации неба максимальна на расстоянии 90 градусов от солнца. Облака смазывают картину поляризации, но в целом она остается. Осталось совместить этот факт и сверхспособности кристалла исландского шпата.

«Эврика» накрыла исследователей, когда они догадались взять кусок картона, провертеть в нем дырку и смотреть через кристалл не прямо на небо, а на эту дырку.

Глаз увидит два отверстия вместо одного. Штука в том, что отверстия будут неравной яркости — одно ярче другого. Поляризованный, необыкновенный луч не обязан быть такой же силы, как неполяризованный, обыкновенный. Но, вращая кристалл, можно добиться совпадения яркостей. На языке физиков это называется «точка деполяризации». Так вот, когда яркости отверстий совпадают, кристалл своей «длинной» диагональю показывает на солнце.

Что дальше? Скажем, с помощью кристалла мы поняли, что солнце находится вот на этой линии. Возьмем другую точку пасмурного неба и посмотрим через кристалл на нее. Мы получим вторую линию. Их пересечение даст нам положение истинного солнца. Конечно, «пересекать» линии придется мысленно. Точность будет не очень высока. Но все равно лучше, чем ничего.

Однако нам нужно не само солнце, а точка юга. Вспомним, что мы говорили выше. Для ориентирования нужно примерно знать время и понимать, где находится солнце. Исследователи предположили, что моряк брал зажженный факел и вставал с той стороны (относительно солнечных часов), где, как показал кристалл, располагается солнце. Тень стрелки солнечных часов падала туда, куда падала бы тень солнца. Осталось, вращая часы, совместить тень с риской, соответствующей текущему времени, найти наконец юг.

Что нужно моряку? Убедиться, что корабль держит курс. Скажем, следует на 20 градусов влево от точки юга. Сопоставив положение точки юга и курс корабля, капитан делает вывод, как надо скорректировать курс. Нам кажется, что без угломерных приборов тут не обойтись. На самом деле, все — хотя и не очень точно — делается руками. Как стопа и шаг стали мерами длины, так толщина большого пальца на вытянутой руке или угловой размер кулака могут быть мерами углов.

Своими руками

Итак, попробуем сами изготовить прибор викингов.

Мне попался не самый прозрачный в мире экземпляр кристалла. Зато с историей: я купил его в 1982 году из-под полы у торговца, который снабжал минералами немногочисленных советских коллекционеров. Я заключил его в трубку, наскоро свернутую из картона. Кристалл неровный, но картон сгладил углы. В один конец трубки я поместил вырезанную из жести заслонку, в которой проделал отверстие. Вот тут внимание: диаметр отверстия должен быть несколько меньше хода лучей в кристалле, иначе картинка смажется. В моем случае оптимальным оказался диаметр в 2 мм.

Посмотрев в трубку, я остался недоволен, потому что я близорук. Изображения отверстия расплывались. Что ж, подумал я, викинги вряд ли страдали этим недугом, так что ничего страшного, если я поправлю природу. Я взял объектив от старого фильмоскопа и вставил в трубку со стороны глаза, сфокусировав его на отверстии. Так намного лучше!

Я вышел на улицу в ясную погоду. Взял угол примерно 90 градусов от солнца и четко увидел два голубых отверстия. Их яркость в самом деле была разной, разница была очень заметна. Я стал вращать трубку с кристаллом вокруг ее оси, и вдруг яркости выровнялись. К моему несказанному восторгу, «длинная» диагональ кристалла в самом деле указала точно на солнце.

Я повторил опыт в пасмурную погоду. Эффект оказался не столь ярко выраженным, тем не менее я находил солнце без труда.

Имеет ли такой «приборчик» практическое значение сегодня? Вряд ли. Смартфон с геолокацией намного эффективнее. Люди разучились пользоваться даже компасом, а тут еще мы со своим кристаллом. Зато это неплохая самоделка для тихих досугов — для тех, кто хочет приобщиться к магии викингов, которая на самом деле физика.

Добавить в закладки
Комментарии
Вам понравилась публикация?
Расскажите, что вы думаете, и мы подберем подходящие материалы

Изобретай за призовые

Как проходят технологические конкурсы и зачем они нужны

Многие изобретения и технологии появлялись на свет не просто потому, что какому-то инженеру пришла в голову замечательная идея. Зачастую, для того чтобы пробудить интерес ученых и изобретателей к решению какой-то проблемы, им необходимо что-то посулить взамен. Так много лет назад появились технологические конкурсы. Какими они были и бывают до сих пор, кто в них участвует и что получается на выходе — в обзоре организаторов одного из таких конкурсов, Up Great.
Добавить в закладки
Комментарии

От парусной навигации до космических кораблей

Одним из первых технологических соревнований стал «Конкурс Долготы», объявленный Британской академией наук в начале XVIII века. Его суть заключалась в необходимости решить проблему точного определения долготы во время длительных морских путешествий.

Победителем стал часовщик Джон Гаррисон: он предложил использовать в навигации хитрое устройство собственной сборки. Сегодня это известный всему миру хронометр. За прошедшие века конструкция прибора Гаррисона практически не изменилась — совершенствовались лишь технологии изготовления и материалы. Сам английский часовщик, неожиданно совершивший технический прорыв, получил не только славу, но и неплохие для своего времени премиальные.

Еще один пример инженерных состязаний — «Приз Ортега» с призовым фондом 25 тысяч долларов. Его целью было совершение первого в истории беспосадочного перелета через Атлантику. Конкурс выиграл молодой Чарльз Линдберг. В 1927 году на сконструированном винтовом самолете «Дух Сент-Луиса» он совершил первый трансатлантический перелет из Нью-Йорка в Париж. Тем самым заработал денег и дал новый толчок развитию самолетостроения в США. [ ... ]

Читать полностью

Пять уверенных прогнозов

Технологии беспилотного транспорта в скором будущем изменят быт и бизнес

В России объявлен старт технологических конкурсов Up Great — русского аналога Darpa Grand Challenge, в рамках которого инженерные команды посоревнуются в создании беспилотного автомобиля для русской зимы. По прогнозу РВК и Frost & Sullivan, к 2025 году беспилотники займут 40% мирового рынка легковых машин.
Добавить в закладки
Комментарии

Взрывной рост технологий автономного транспорта приведет к созданию новых продуктов и сегментов бизнеса. Они обещают изменить жизнь людей так же, как в начале ХХ века ее изменило появление автомобиля. Организаторы Up Great выбрали пять «вещей из будущего», которые появятся в результате преодоления технологического барьера, и поделились ими с «Чердаком».

В салоне беспилотного автомобиля на трассе. Автор: Metamorworks / Shutterstock

В салоне беспилотного автомобиля на трассе. Автор: Metamorworks / Shutterstock

Автономный общественный транспорт без водителя

Автоматизация вождения приведет к созданию инновационных продуктов и решений в различных сферах. Одна из них — автономные такси. Благодаря совершенствованию беспилотных технологий они могут набрать популярность уже в ближайшие годы. [ ... ]

Читать полностью

Патч для Госплана

Как Виктор Глушков пытался спасти плановую экономику при помощи сети ЭВМ

24 августа 1923 года родился Виктор Глушков — «разработчик советского интернета» (что не совсем верно) и выдающийся кибернетик, который предложил спасти плановую экономику компьютерными сетями (а вот это так и было).
Добавить в закладки
Комментарии

Глушков вырос в семье горного инженера из Ростова-на-Дону. Он с детства демонстрировал склонность к инженерии — например, сделал модель трамвая на радиоуправлении — и, несмотря на слабое зрение, достиг больших успехов в учебе. Проживание на оккупированной территории не позволило ему попасть в МГУ, но он поступил сначала в Новочеркасский индустриальный институт по специальности инженера-теплотехника, а затем перевелся на мехмат в Ростовский университет, заочником.

По распределению Виктор попал на Урал, и тут сведения о его биографии у разных источников разнятся: в одних говорится про участие молодого математика в работе над атомным проектом, в других же указывается, что Глушков работал всего лишь ассистентом на три четверти ставки в Лесотехническом институте (хотя одно другому не мешает). В любом случае, на этом этапе его жизни ключевая фигура — жена, Валентина Папкова. Выпускница энергетического факультета, попавшая на работу в «Свердловэнерго», дала возможность мужу сосредоточиться на научной работе: он поступил в аспирантуру, успешно защитил диссертацию и в итоге стал одним из ведущих советских специалистов по кибернетике.

Один шаг до «интернета»

[ ... ]

Читать полностью