Текст уведомления здесь

Рекордсмен на быстрых нейтронах

Реактор на быстрых нейтронах Белоярской АЭС отмечает 35-летие

8 апреля 2015 года исполняется 35 лет успешной работы единственного в мире промышленного реактора на быстрых нейтронах — БН-600 Белоярской АЭС. Что такое быстрые нейтроны, зачем они нужны, чем полезны и чем опасны, разбиралась редакция «Чердака».
Добавить в закладки
Комментарии
Нейтроны?

Нейтроны — это частицы, входящие в состав большинства атомных ядер наряду с протонами. В ходе реакции ядерного распада ядро урана делится на две части и вдобавок испускает несколько нейтронов. Они могут попасть в другие атомы и спровоцировать еще одну или несколько реакций деления. Если каждый выпущенный при распаде ядер урана нейтрон будет попадать в соседние атомы, то начнется лавинообразная цепочка реакций с выделением все большей и большей энергии. При отсутствии сдерживающих факторов произойдет ядерный взрыв.

Но в ядерном реакторе часть нейтронов либо выходит наружу, либо поглощается специальными поглотителями. Поэтому число реакций деления все время остается одним и тем же, ровно таким, какое необходимо для получения энергии. Энергия реакции радиоактивного распада дает тепло, которое затем используется для получения крутящего турбины электростанции пара.

Нейтроны, которые поддерживают ядерную реакцию на постоянном уровне, могут иметь разную энергию. В зависимости от энергии их называют либо тепловыми, либо быстрыми (есть еще холодные, но те для АЭС не годятся). Большинство реакторов в мире основаны на использовании тепловых нейтронов, а вот на Белоярской АЭС стоит реактор на быстрых. Почему?

В чем преимущества?

В реакторе на быстрых нейтронах часть энергии нейтронов идет, как и в обычных реакторах, на поддержание реакции деления основного компонента ядерного топлива, урана-235. А еще часть энергии поглощается оболочкой, сделанной из урана-238 или тория-232. Эти элементы для обычных реакторов бесполезны. Когда в их ядра попадают нейтроны, они превращаются в изотопы, пригодные для использования в ядерной энергетике в качестве топлива: плутоний-239 или уран-233.

Обогащенный уран. В отличие от отработанного ядерного топлива уран далеко не столь радиоактивен, чтобы с ним приходилось работать только при помощи роботов. Его даже можно ненадолго брать руками в плотных перчатках. Фото: Департамент энергетики США

Таким образом, реакторы на быстрых нейтронах можно использовать не только для энергоснабжения городов и заводов, но и для получения нового ядерного топлива из сравнительно недорого сырья. В пользу экономической выгоды говорят такие факты: килограмм выплавленного из руды урана стоит около полусотни долларов, содержит всего два грамма урана-235, а остальное приходится на уран-238.

Однако реакторы на быстрых нейтронах в мире практически не используются. БН-600 можно считать уникальным. Ни японский «Мондзю», ни французский «Феникс», ни ряд экспериментальных реакторов США и Великобритании сейчас не работают: реакторы на тепловых нейтронах оказались проще в сооружении и эксплуатации. На пути к реакторам, которые смогут сочетать производство энергии с производством ядерного топлива, стоит ряд препятствий. И как минимум часть препятствий конструкторы БН-600, судя по его успешной эксплуатации в течение 35 лет, смогли обойти.

В чем проблема?

В натрии. В любом ядерном реакторе обязательно должно быть несколько узлов и элементов: тепловыделяющие сборки с ядерным топливом, элементы для управления ядерной реакцией и теплоноситель, который забирает выделяющееся в устройстве тепло. Конструкция этих узлов, состав топлива и теплоносителя могут отличаться, но без них реактор невозможен по определению.

В реакторе на быстрых нейтронах в качестве теплоносителя нужно использовать материал, который не задерживает нейтроны, иначе они из быстрых станут медленными, тепловыми. На заре атомной энергетики конструкторы попробовали использовать ртуть, но она растворила трубы внутри реактора и начала протекать наружу. Нагретый ядовитый металл, который к тому же стал под действием облучения радиоактивным, причинил так много хлопот, что проект ртутного реактора быстро закрыли.

Кусочки натрия хранят обычно под слоем керосина. Эта жидкость хоть и горюча, с натрием не реагирует и не пускает к нему пары воды из воздуха. Фото: Superplus / Wikipedia

В БН-600 используется жидкий натрий. На первый взгляд, натрий немногим лучше ртути: он чрезвычайно активен химически, бурно реагирует с водой (проще говоря, взрывается, если кинуть в воду) и вступает в реакцию даже с входящими в состав бетона веществами. Однако он не мешает нейтронам, а при должном уровне строительных работ и последующего техобслуживания риск утечки не так уж велик. Кроме того, натрий, в отличие от водяного пара, можно перекачивать при нормальном давлении. Струя пара из прорвавшегося паропровода под давлением в сотни атмосфер режет металл, так что в этом смысле натрий безопаснее. А что касается химической активности, то и ее можно обратить во благо. В случае аварии натрий реагирует не только с бетоном, но и с радиоактивным йодом. Йодид натрия уже не покидает пределы здания АЭС, в то время как на газообразный йод пришлась едва ли не половина выбросов при аварии на АЭС в Фукусиме.

Советские инженеры, разрабатывавшие реакторы на быстрых нейтронах, сначала построили опытный БР-2 (тот самый неудачный, ртутный), а потом экспериментальные же БР-5 и БОР-60 с натрием вместо ртути. Полученные на них данные позволили спроектировать первый промышленный «быстрый» реактор БН-350, который использовался на уникальном атомном химико-энергетическом комбинате — АЭС, совмещенной с опреснителем морской воды. На Белоярской АЭС построили уже второй по счету реактор типа БН — «быстрый, натриевый».

Реакторный зал БН-350.

Несмотря на накопленный к моменту запуска БН-600 опыт, первые годы были омрачены серией утечек жидкого натрия. Ни одно из этих происшествий не несло радиационной угрозы для населения и не приводило к серьезному облучению персонала станции, а с начала 1990-х годов утечки натрия вовсе прекратились. Для помещения этого в мировой контекст отметим, что на японском «Мондзю» в 1995 произошла серьезная утечка жидкого натрия, которая привела к пожару и остановке станции на 15 лет. Воплотить идею реактора на быстрых нейтронах в промышленном, а не экспериментальном устройстве удалось только советским конструкторам, опыт которых позволил российским атомщикам разработать и построить реактор следующего поколения — БН-800.

Что дальше?

БН-800 уже построен. 27 июня 2014 года реактор заработал на минимальной мощности, а в 2015 году ожидается и энергетический пуск. Поскольку запуск ядерного реактора представляет собой весьма сложный процесс, специалисты разделяют физический пуск (начало самоподдерживающейся цепной реакции) и энергетический пуск, при котором энергоблок начинает выдавать в сеть первые мегаватты электроэнергии.

Белоярская АЭС, пульт управления. Фото с официального сайта: http://www.belnpp.rosenergoatom.ru

В БН-800 конструкторы воплотили ряд важных усовершенствований, включая, к примеру, аварийную систему воздушного охлаждения реактора. Ее достоинством разработчики называют независимость от источников энергии. Если, как на Фукусиме, на АЭС исчезнет электричество, то охлаждающий реактор поток все равно не исчезнет — циркуляция будет поддерживаться естественным путем, за счет конвекции, поднятия вверх нагретого воздуха. А если вдруг произойдет расплавление активной зоны, то радиоактивный расплав уйдет не вовне, а в специальную ловушку. Наконец, защитой от перегрева выступает большой запас натрия, который в случае аварии может принять выделяемое тепло даже при полном отказе всех систем охлаждения.

Вслед за БН-800 предполагается построить и реактор БН-1200, еще большей мощности. Разработчики рассчитывают, что их детище станет серийным реактором и будет применяться не только на Белоярской АЭС, но и на других станциях. Впрочем, пока это планы — для крупномасштабного перехода на реакторы на быстрых нейтронах еще предстоит решить ряд проблем.

Белоярская АЭС, строительная площадка нового энергоблока. Фото с официального сайта: http://www.belnpp.rosenergoatom.ru

В чем проблема?

В экономике и экологии топлива. Реакторы на быстрых нейтронах работают на смеси обогащенной окиси урана и окиси плутония — это так называемое мокс-топливо. Теоретически оно может быть дешевле обычного в силу того, что использует плутоний или уран-233 из облученного в других реакторах недорогого урана-238 или тория, но пока мокс-топливо проигрывает в цене обычному. Получается своего рода замкнутый круг, который не так просто разорвать: нужно отладить и технологию постройки реакторов, и извлечение плутония с ураном из облученного в реакторе материала, и обеспечить контроль за нераспространением высокоактивных материалов. Некоторые экологи, к примеру представители некоммерческого центра «Беллона», указывают на большой объем получаемых при переработке облученного материала отходов, ведь наряду с ценными изотопами в реакторе на быстрых нейтронах образуется значительное количество радионуклидов, которые нужно где-то захоранивать.

Иными словами, даже успешная эксплуатация реактора на быстрых нейтронах сама по себе еще не гарантирует революции в атомной энергетике. Она является необходимым, но не достаточным условием для того, чтобы все-таки перейти с ограниченных запасов урана-235 на куда более доступные уран-238 и торий-232. Смогут ли технологи, занятые процессами переработки ядерного топлива и утилизацией ядерных отходов, справиться со своими задачами — тема для отдельного рассказа.
Добавить в закладки
Комментарии
Вам понравилась публикация?
Расскажите, что вы думаете, и мы подберем подходящие материалы