Текст уведомления здесь

Космическая лихорадка

Насколько реальны планы добывать полезные ископаемые в космосе

Если посмотреть промо-ролики «космошахтерских» компаний Planetary Resources или Deep Space Industries, создается впечатление, что это реклама компьютерной игры: красивая графика и фантастический сюжет про добычу в космосе полезных ископаемых. «Чердак» разбирается, что в проектах извлечения прибыли из разработки недр астероидов пока остается полной фантастикой, а что уже приобретает реальные черты.
Добавить в закладки
Комментарии

Почем астероид?

Рассуждать, сколько всего ценного можно добыть на астероидах, — задача приятная и увлекательная, поскольку цифры получаются астрономические, а подсчеты за нас уже провел Ян Уэбстер, создатель сайта Asterank (ныне принадлежит Planetary Resources). Он уже рассчитал приблизительную ценность недр тысяч астероидов и примерную стоимость их разработки с поправкой на то, насколько доступен тот или иной астероид для миссий с Земли. Самым экономически выгодным, по его расчетам, является астероид Рюгу — тот содержит никеля, кобальта, железа и воды на $ 83 миллиарда, а его разработка может принести до $ 30 миллиардов чистой прибыли. В этом году до него как раз должен долететь японский космический аппарат «Хаябуса-2».

Художественное изображение «Хаябусы-2» и астероида Рюгу / ISAS / JAXA
Художественное изображение «Хаябусы-2» и астероида Рюгу / ISAS / JAXA

Из чего состоят астероиды, с Земли можно установить по спектру света, который они отражают. Особенно интересны с точки зрения содержания воды, редкоземельных элементов и платиноидов астероиды, состоящие из углистых хондритов. Однако спектральный анализ, конечно, не абсолютно точен.

«Например, недавно выяснилось, почему спектр астероидов, которые состоят из углистых хондритов, отличается от тех хондритов, которые находятся в нашей метеоритной коллекции и могут быть исследованы в лаборатории. Оказалось, что в результате облучения солнечным ветром в частицах реголита на поверхности этих астероидов разрушается кристаллическая решетка и образуется аморфная пленка, а в ней — наносферы железа, которые придают спектру красноватый оттенок. Это стало понятно благодаря тому, что японский аппарат „Хаябуса“ доставил образцы реголита с поверхности астероида Итокава на Землю», — говорит в беседе с «Чердаком» Евгений Слюта, заведующий лабораторией геохимии Луны и планет Института геохимии и аналитической химии имени В.И. Вернадского.

Однако экономическая целесообразность разработки астероидов пока остается под вопросом. «Платиноидов и редкоземельных элементов еще вполне достаточно и на Земле. Например, в России есть так называемые „забалансовые“ запасы, которые были разведаны еще в советское время. Как инженер-геолог по образованию, могу сказать, что этих месторождений хватит еще не на одну сотню лет», — считает Слюта.

К тому же сама технология доставки полезных ископаемых с астероидов на Землю — дело пока темное. Технологию захвата астероидов и доставки их на лунную орбиту разрабатывало НАСА, однако в прошлом году этот проект агентства был закрыт из-за отсутствия финансирования.

Основные энтузиасты космической добычи, те самые Planetary Resources и Deep Space Industries, пока зарабатывают не бурением шахт в далеких астероидах, а разработкой спутников. Так, в 2016 году Planetary Resources получила $ 21 миллион от инвесторов на программу дистанционного зондирования Земли Ceres, а Deep Space Industries поставляет спутники для компании, HawkEye 360, которая также разрабатывает систему мониторинга Земли из космоса.

Пока что на правду больше похоже использование добытых в космосе ресурсов на месте. Причем первым космическим месторождением, по всей видимости, станут не астероиды, а Луна, а добываемым ресурсом — вода.

Дотянуть до заправки

Точнее, не сама по себе вода, а кислород и водород, на которые вода разлагается под действием электрического тока. «Водородные двигатели уже существуют, и КПД у них высокий», — говорит Анна Плотникова, преподаватель МИСиС, старший научный сотрудник научно-образовательного центра «Инновационные горные технологии».

Основным потребителем этого топлива могут стать заправочные станции для спутников. Запуск спутника — дело дорогое, а когда на нем кончается топливо, он превращается в космический мусор. С технологиями дозаправки в космосе экспериментируют и NASA, и Китай, и частные компании.

«Как только найдутся компании, которые станут заниматься дозаправкой спутников, добыча ресурсов в космосе станет очень экономически привлекательна. Сейчас вывести на орбиту Земли килограмм груза — это 10—30 тысяч долларов. А если добывать воду на Луне, то ее доставка будет стоит менее тысячи долларов. Как только появятся заправочные станции, найдутся желающие покупать эту воду», — уверена Плотникова.

При участии МИСИС, ТГУ, ТУСУР, НП «ЦИГТ» и ряда частных компаний ведутся работы над развитием технологий, связанных с добычей ископаемых в космосе: испарением воды из грунта, похожего на лунный реголит, технологией холодного бурения. «На Луне небольшое изменение температуры грунта из-за вакуума ведет к интенсивному испарению. Если при бурении порода нагреется больше, чем на несколько градусов, то все, что нас интересует, просто испарится», — объясняет Плотникова. Также ученые и инженеры работают над созданием имитаторов лунного грунта, чтобы тестировать на Земле космическую технику, — иначе получится как с марсоходом Curiosity, поверхность колес которого разрушается быстрее, чем планировалось.

«Сейчас мы вместе с Томским государственным университетом хотим запустить следующий проект: испарить кусок грунта, „разобрать“ его на атомы, после чего сконденсировать чистые материалы для строительства или производства деталей аппаратов непосредственно в космосе. С ТГУ — научные обоснования, с нас — изготовление оборудования и эксперименты», — рассказывает Анна.

Еще одна проблема, которую нужно решить, чтобы сделать разработку месторождений на Луне былью, — медленная связь. Сигнал до Луны идет где-то секунду с небольшим и столько же обратно. Если робот на ее поверхности совершит неудачный маневр, он может застрять в какой-нибудь расщелине прежде, чем на Земле успеют отдать ему команду поменять траекторию.

«Мы хотим сделать прототип разведочного робота и поставить его на Земле, например во дворе МИСиС, и через ЦУП ТУСУРа посылать сигнал в космос на спутник, а со спутника — на этот „лунный трактор“. Это поможет проработать проблемы со связью, которые могут возникнуть в ходе реальной экспедиции», — рассказала инженер.

В более отдаленных планах — прототип разведочного робота с искусственным интеллектом, который сможет сам принимать решения и самообучаться.

Подобный «трактор» разрабатывает и НАСА. Предполагается, что он полетит на Луну в начале 2020-х годов.

Лунный трактор НАСА, Resource Prospector

«Когда мы начинали этим заниматься в 2011 году, на этот проект реагировали неоднозначно. Основной вопрос, который мы слышали: „Ребят, вам что, на Земле делать нечего?“ А сейчас прошло семь лет и началась настоящая гонка. Европа активно занимается вопросами добычи воды, Китай изучает вопросы бурения в космосе. Думаю, что до реальной добычи ресурсов в космосе пройдет еще максимум еще 10 лет», — считает Плотникова.

Интересно, что при всем этом мировое законодательство запрещает использовать космические ресурсы в коммерческих целях. Но в США в 2015 году был принят закон, который дает право частным компаниям добывать минералы и другие вещества, в частности воду, на астероидах и Луне с коммерческими целями. А в прошлом году подобный закон появился в Люксембурге. Россия пока что следует международному законодательству. «Однако это ведет к тому, что еще чуть-чуть — и мы начнем очень сильно отставать в вопросах освоения ресурсов в космосе», — предупреждает ученый.

Добавить в закладки
Комментарии
Вам понравилась публикация?
Расскажите, что вы думаете, и мы подберем подходящие материалы

Печальная история «Науки»

Филипп Терехов — о судьбе последнего в своем роде модуля МКС и его будущем

В феврале этого года космонавты Александр Мисуркин и Антон Шкаплеров начнут подготовку российского сегмента Международной космической станции к встрече модуля «Наука», который уже второй раз выходит на финишную прямую перед запуском. В прошлый раз — в 2013 году — его успели собрать и отправить на испытания, где обнаружилось загрязнение в двигательной системе. На устранение замечаний и переборку ушли годы. По просьбе «Чердака» о долгой и немного печальной истории модуля, который не может отправиться в космос уже больше двух десятилетий, рассказывает Филипп «lozga» Терехов.
Добавить в закладки
Комментарии

Приключения транспортного корабля снабжения

В 1960-х в СССР разрабатывалась военная орбитальная станция «Алмаз». Главной задачей ее экипажей должно было стать фотографирование Земли. Отснятую пленку требовалось возвращать с орбиты, но корабль «Союз» мог перевозить очень небольшое количество груза. Поэтому разработчик станции, ОКБ-52 решило заодно создать универсальный корабль, который мог бы не только доставлять на орбиту большие объемы груза, но и возвращать на Землю экипажи вместе с километрами отснятой пленки. Корабль назвали ТКС — «транспортный корабль снабжения».

Поскольку на орбиту корабль собирались выводить на ракете «Протон», которая может поднять целых двадцать с небольшим тонн, у конструкторов появилась возможность реализовать красивое и эффективное решение: ТКС состоял из двух блоков, возвращаемого аппарата (ВА) и функционально-грузового блока (ФГБ). Особенность последнего заключалась в том, что такие блоки могли служить «кирпичиками» для орбитальных станций. Эти серийно изготавливаемые модули можно было просто добавлять к станции, присоединяя или меняя модули по желанию и/или необходимости (отдаленно похожую идею реализовали на МКС и американцы, когда шаттлы возили MPLM). Это фактически и определило будущее всего проекта: после испытаний возвращаемого аппарата (кстати, они были рассчитаны на многоразовое использование, и два экземпляра совершили по два полета) и тестового автономного полета ТКС-1 (он же «Космос-929») ТКС отправился к станции «Салют-6». Космонавтов на ней уже не было, но аппарат успешно пристыковался, продемонстрировав возможность расширять орбитальные станции за счет новых модулей. Третий ТКС был запущен к станции «Салют-7» и проработал в ее составе с марта по сентябрь 1983 года. Четвертый (и последний) корабль отправился к «Салюту-7» в 1985 году.

Модель функционально-грузового блока (ФГБ, левая часть конструкции) возвращаемого аппарата (ВА) и система аварийного спасения (САС). Фото: Stefanwotzlaw / wikimedia commons / CC BY-SA 3.0
Модель функционально-грузового блока (ФГБ, левая часть конструкции) возвращаемого аппарата (ВА) и система аварийного спасения (САС). Фото: Stefanwotzlaw / wikimedia commons / CC BY-SA 3.0

[ ... ]
Читать полностью
Фрагмент Королевских ворот в Хаттусу, столицу Хеттской империиStylone / Фотодом / Shutterstock

Бронзовый коллапс, или Куда делись все эти люди

Чем был вызван кризис средиземноморских цивилизаций три тысячи лет назад

В конце второго тысячелетия до нашей эры в Греции и на Ближнем Востоке — в Месопотамии, в Древнем Египте, в Сирии, в Малой Азии — творились очень странные дела. Великие царства бронзового века одно за другим уходили в небытие, из ниоткуда появлялись новые народы, хроники повествовали о нашествиях, голоде и прочих бедствиях. Историки долго предпочитали винить во всем «народы моря», но теперь, благодаря археологическим данным, полученным в последние годы, у нас, кажется, есть основания иначе отвечать на вопрос, кто виноват в коллапсе «бронзовых» цивилизаций.
Добавить в закладки
Комментарии

Как рассказывает профессор Эрик Клайн из Университета Джорджа Вашингтона, директор Капитолийского археологического института, автор книги «1177 BC: The Year Civilization Collapsed», Средиземноморье позднего бронзового века представляло собой мир, очень похожий на современный, — глобализованное пространство с торговыми нитями, опутавшими всю ойкумену, то есть все страны, составлявшие на тот момент европейскую цивилизацию.

Торговые и культурные связи второго тысячелетия до нашей эры обеспечивали единый высокий технологический уровень городов Греции и Ближнего Востока во всем: в кораблестроении, в архитектуре, в обработке металлов. Чтобы показать протяженность и устойчивость торговых путей бронзового века, достаточно сказать, что олово для выплавки бронзовых изделий поступало, скорее всего, из Афганистана, а медь брали на Кипре.  Города были оснащены системами водоснабжения, инженерный уровень которых античным грекам тысячу лет спустя и не снился.

Все это откатилось назад со страшной скоростью в кратчайшие по меркам истории сроки, чтобы сбросить с древнего мира бронзовый век и позволить ему войти в новый век — железный, в ту историю, которую мы изучаем в школе.

За относительно короткое время — в древнеегипетских надписях зафиксирован промежуток от 1207 до 1177 года до нашей эры — весь прекрасный бронзовый мир растворяется. Торговые связи рушатся. Из известных нам царств бронзового века в более-менее нетронутом виде остается Египет, который теряет контроль над Сирией и Палестиной. Вавилон и Ассирия сохраняют разве что локальное значение. Исчезает микенская цивилизация. Разрушена Троя. [ ... ]

Читать полностью

Хондрит не проскочит

Ученые из МФТИ провели учебную ядерную атаку на астероиды

Благодаря серии экспериментов по разрушению искусственных хондритов с помощью лазеров в лабораторных условиях, российские ученые смогли лучше понять, как эффективнее всего разрушать астероиды атомным оружием.
Добавить в закладки
Комментарии

Исследователи из Росатома, Российского федерального ядерного центра и МФТИ создали в лаборатории небольшие копии хондритных астероидов, а затем с помощью лазеров разрушили их. Наносекундный лазерный импульс послужил экспериментальной заменой ядерному взрыву. Опыты показали высокую эффективность ядерной противоастероидной обороны, а также подсказали самые результативные пути ее реализации. Соответствующая статья опубликована в Журнале экспериментальной и теоретической физики.

Удар астероида — практически единственная из глобальных катастроф за последние 200 миллионов лет, которая вызвала массовое вымирание больших масштабов. 66 миллионов лет назад взрыв одного астероида был эквивалентен по мощности 100 миллионам мегатонн, что примерно в 20 000 раз мощнее всего имеющегося ядерного арсенала на Земле. В связи с этим, в отличие от собственно ядерной войны, падение крупного астероида действительно может вызвать вымирание человечества на планете, и вопрос о предупреждении подобного события весьма важен для будущего нашего вида.

В теории астероид можно разрушить ядерной боеголовкой еще в космосе, на подлете к Земле. Но процесс этот надо тщательно рассчитать, чтобы разбить небесное тело на осколки нужного (неопасного) размера. Иначе вместо ликвидации угрозы астероидной бомбардировки можно получить еще более широкое накрытие населенных частей планеты сразу множеством ударов. Но если фрагментация астероида будет тщательно рассчитанной, то на планету упадут осколки небольших размеров, порядка Челябинского метеорита. Благодаря фрагментации они либо сгорят, либо взорвутся высоко в атмосфере, что позволит избежать человеческих жертв.

Иллюстрация пресс-службы МФТИ

Иллюстрация пресс-службы МФТИ

[ ... ]
Читать полностью