Текст уведомления здесь

Не восстановятся теперь уж никогда

Как свежее исследование поставило под сомнение реальность взрослого нейрогенеза у людей и что это может значить для науки

Недавнее исследование фрагментов гиппокампа эмбрионов, детей и взрослых показало, что новые нервные клетки в этой области мозга перестают появляться уже к подростковому возрасту. Это противоречит большинству предыдущих работ по той же теме. Однако и к новому исследованию есть вопросы, да и рассматривать его нужно в контексте других исследований взрослого нейрогенеза.
Добавить в закладки
Комментарии

Пока россияне отмечали Международный женский день, редакторы ведущего научного журнала Nature готовили к публикации его очередной номер. Когда в ночь на 8 марта он вышел, наибольший интерес у биологов, да и у журналистов, в нем вызвала статья, авторы которой сделали на первый взгляд сенсационное сообщение: у взрослых людей новых нейронов в гиппокампе появляется так мало, что обнаружить их фактически не удается! Об этом факте сочли своим долгом сообщить многие СМИ. Более близкие к народу писали: «Нейроны все-таки не восстанавливаются!» Те же, кто больше симпатизирует ученым, копали чуть глубже и добавляли к своим заметкам, что в методике новой работы есть недочеты. Ну, а на самом деле, независимо от того, где скрыта истина, наша жизнь от такого крушения нейробиологических устоев не станет ни хуже, ни лучше. И вот почему.

О чем шумим?

Нейробиологи из Калифорнийского университета в Сан-Франциско измеряли, с какой интенсивностью идет образование новых нейронов из клеток-предшественников в гиппокампе людей различного возраста. Такой процесс называют нейрогенезом, а если речь идет о половозрелых «подопытных», то — взрослым нейрогенезом (adult neurogenesis). Для этого ученые взяли образцы ткани гиппокампа у эмбрионов и детей до 17 лет, а также у 17 взрослых в возрасте от 18 до 77 лет. Все они были уже мертвы. Впрочем, удалось получить и срезы гиппокампа 22 живых людей (как взрослых, так и детей), которым провели операцию по удалению этой части мозга в связи с эпилепсией. Всего в работе использовали гиппокампы 59 человек.

Полученные срезы нервной ткани окрасили флуоресцирующими (светящимися) антителами, выявляющими наличие двух веществ — даблкортина (DCX) и нейральных молекул клеточной адгезии (PSA-NCAM) — маркеров незрелых нейронов. Клетка считалась вновь образованной только в том случае, если после такой окраски она флуоресцировала смесью двух цветов — от антител к обоим соединениям. Те нейроны, которые вырабатывали только один из названных маркеров, не учитывали.

Раскрашенные срезы выглядят, например, так. На снимке — срез гиппокампа мыши, на котором светятся зоны экспрессии даблкортина (рыжий). Фото: Jason Snyder / flickr / CC BY 2.0
Раскрашенные срезы выглядят, например, так. На снимке — срез гиппокампа мыши, на котором светятся зоны экспрессии даблкортина (рыжий). Фото: Jason Snyder / flickr / CC BY 2.0

Результаты «покраски» оказались весьма неожиданными для мира, свыкшегося с мыслью, что нервные клетки все-таки восстанавливаются. У эмбрионов и детей до года новые нервные клетки в гиппокампе активно образовывались из предшественников и созревали. После года скорость появления нейронов там существенно замедлялась. У тринадцатилетнего ребенка нейрогенез уже практически отсутствовал, а у всех, кто был еще старше, его признаков не обнаружили вовсе.

Такие данные резко расходятся с результатами, полученными другими исследовательскими коллективами ранее. Но иными методами: либо с помощью радиоактивного углерода, который может встроиться только в делящиеся молекулы ДНК, либо с использованием бромдезоксиуридина (BrdU), вещества, обладающего сходными свойствами. И хотя сравнивать результаты, полученные с помощью различных методик, нелегко, некоторые ученые, работающие в области взрослого нейрогенеза, уже высказали ряд претензий к новой статье.

Нападение и защита

Первая претензия к калифорнийцам: не надо было использовать образцы мозга от умерших людей. Наверняка за то время, пока их мозг был внутри уже безжизненного тела, маркеры делящихся клеток в нем успели повредиться или даже разложиться. Потому-то ни у одного взрослого новых нейронов в гиппокампе не нашли. Более того, в ряде случаев смерть наступила из-за инсульта или отказа мотонейронов, а следовательно, нервная ткань была повреждена.

Авторы статьи в Nature возражают: да, в случае с погибшими взрослыми отсутствие делящихся предшественников нейронов в гиппокампе можно списать на посмертные биохимические процессы. Но к результатам, полученным для эпилептиков, такое объяснение не годится. Выходит, что независимо от источника происхождения биоматериала в гиппокампе людей старше 13 лет новых нейронов так мало, что найти их не получается. С другой стороны, остается довольно спорным, насколько данные по срезам мозга людей, страдающих эпилепсией, можно перенести на вполне здоровых испытуемых.

Претензия вторая: слишком уж строгие критерии отбора новых нейронов. Может быть так, что клетка созрела уже до такой степени, что один из маркеров — DCX или PSA-NCAM — в ней прекратил образовываться. Но ведь это же не делает ее автоматически «старой»! И к тому же содержание даблкортина в новых нейронах очень сильно зависит от того, что живое существо испытало, прежде чем ткань его мозга начали анализировать на интенсивность нейрогенеза. Например, у одного вида летучих мышей это проявляется весьма ярко: всего через полчаса после поимки уровень DCX у них в гиппокампе падает до нуля из-за стресса. Был ли стресс перед операцией по удалению гиппокампа у больных эпилепсией? Почти наверняка. Испытывали ли стресс те, кто погиб от почечной недостаточности или инсульта (а такие были среди тех, у кого посмертно извлекали гиппокамп)? Вполне вероятно.

На это авторы статьи об отсутствующем нейрогенезе отвечают, что в других исследованиях взрослого нейрогенеза у людей тоже ничего не сказано про психическое состояние участников экспериментов. Поэтому такие претензии попахивают двойными стандартами.

Наконец, методы. Почему читатели новой работы должны верить, что она опровергает результаты старых исследований, если использованы в корне разные подходы? Потому, считают калифорнийцы, что их способ поиска новых нейронов в гиппокампе надежнее. Образцы ткани гиппокампа, меченные радиоактивным углеродом, могут быть загрязнены им же, только появившимся из других источников. Классическое исследование с опорой на данные о концентрации радиоуглерода в тканях человеческого мозга отталкивалось от того факта, что в середине ХХ века содержание этого элемента в экосистеме резко возросло из-за ядерных испытаний США и СССР, и таким, скорее «археологическим», методом датировало возраст нейронов в мозге людей, уже преодолевших порог юности к периоду 1955—1963-х годов. А бромдезоксиуридин к тому же помечает и умирающие от недостатка кислорода клетки, что выглядит просто злой иронией в изучении нейрогенеза. Более того, как оказалось, бромдезоксиуридин даже ускоряет гибель нейронов. И наконец, последний контраргумент: в исследованиях с использованием одного лишь даблкортина, без нейтральных молекул клеточной адгезии, уже немолодые нейроны могут быть ошибочно приняты за новые.

Слева: нейрон, окрашенный бромдезоксиуридином. Справа: тот же самый нейрон, но уже «в оптике» экспрессии даблкортина. Фото (фрагмент): Jason Snyder / flickr / CC BY 2.0
Слева: нейрон, окрашенный бромдезоксиуридином. Справа: тот же самый нейрон, но уже «в оптике» экспрессии даблкортина. Фото (фрагмент): Jason Snyder / flickr / CC BY 2.0

Ищем ключи под фонарем

Гиппокамп — это, безусловно, важная часть головного мозга. Он нужен и для запоминания нового, и для ориентации в пространстве. Кроме того, именно в этой структуре впервые обнаружили долговременную потенциацию — усиление и облегчение передачи сигналов между нейронами, длящееся несколько часов или даже суток — основу памяти. Гиппокамп человека хорошо изучен, потому что его нередко приходится вырезать у больных височной эпилепсией, которым лекарства уже не помогают снизить частоту и интенсивность припадков. После такой процедуры врачам волей-неволей приходится наблюдать, как удаление этой области мозга влияет на интеллект и характер пациентов.

К тому же с гиппокампом очень удобно экспериментировать на грызунах. Он у них весьма крупный, к нему легко дотянуться электродами и другими приспособлениями. Вероятно, это одна из причин, почему новые нейроны у взрослых животных ищут именно там, — это проще всего.

Однако люди далеко не грызуны, кроме гиппокампа у нас в мозге есть еще кое-что поважнее — кора больших полушарий. Она у нас развита хорошо, пожалуй лучше, чем у всех остальных млекопитающих. Именно кора обеспечивает способность говорить, думать, планировать, мастерить и творить. Кора больших полушарий относится к неокортексу, или новой коре. У примитивных млекопитающих ее, считай, и нет, а у множества грызунов, в том числе мышей и крыс, она развита слабо: косвенно об этом можно судить по числу извилин, которые у этих животных почти отсутствуют. А гиппокамп — это и вовсе древняя кора, самая старая и самая примитивная из существующих. Он есть и у рептилий.

Большие полушария головного мозга мыши (в правой части рисунка) практически не имеют извилин, зато гиппокамп (зеленая петля с розовым крючком в ней, чуть выше центра рисунка) крупная и находится недалеко от поверхности. Фото: NICHD/I. Williams / flickr / CC BY 2.0

Большие полушария головного мозга мыши (в правой части рисунка) практически не имеют извилин, зато гиппокамп (зеленая петля с розовым крючком в ней, чуть выше центра рисунка) крупная и находится недалеко от поверхности. Фото: NICHD/I. Williams / flickr / CC BY 2.0

Логично предположить, что чем более продвинуто в плане строения нервной системы животное, тем меньшую роль в его деятельности играет гиппокамп и тем большую — новая кора. Раз так, то смысла обновлять клетки древней коры становится меньше, а добавлять нейроны к коре больших полушарий, наоборот, выгоднее (и у людей это, кстати, происходит). Зачем менять ручку двери ванной, если в квартире обваливается потолок?

Мозги различных видов млекопитающих вполне следуют этой логике. У кошек, кроликов и морских свинок незрелые нейроны находят далеко не только в гиппокампе, но и в новой коре, а вот у крыс и мышей большие полушария не обновляются: видимо, размер этих животных маловат. А у дельфинов — животных еще более крупных, дольше живущих, а главное, умных — ко всему прочему скорость взрослого нейрогенеза в гиппокампе с возрастом падает практически до нуля. Люди, как можно заметить, во многом умнее дельфинов, да и не всегда сильно мельче. Так что сильно удивляться отсутствию нейрогенеза в гиппокампе взрослых Homo sapiens нелогично.

Но эксперименты на людях ставить нельзя. Им можно только делать операции, в ходе которых часть тканей головного мозга удаляется. Значит, для детального изучения нейрогенеза у взрослых нужны какие-то другие крупные млекопитающие. Дельфины подошли бы, но есть две проблемы. Во-первых, они живут в воде и в неволе содержать их трудно. Во-вторых, комитеты по биоэтике постоянно сужают круг допустимых манипуляций над ними: обижать умных считается делом нехорошим. С обезьянами та же беда: они слишком похожи на нас, и каждый год приматологи находят новые черты их интеллектуального сходства с нами, так что эксперименты на приматах тоже постепенно сворачивают. Поэтому авторы статьи, вышедшей в конце января в The Journal of Neuroscience, на роль объекта изучения выбрали овец. Они и крупные, и живут долго (в неволе до 30 лет, как и макаки), и извилин у них гораздо больше, чем у грызунов (то есть площадь новой коры настолько велика, что она умещается в череп, лишь если ее несколько раз сложить). А значит, овцы по строению и ходу развития головного мозга почти наверняка ближе к человеку, чем мыши и крысы. Ученые сделали срезы головного мозга новорожденных и подросших ягнят, а также половозрелых особей. Проверив их на содержание все того же даблкортина, биологи выяснили, где какие клетки появляются у животных этого вида.

Мозг овцы. Фото (в цвете): Shannan Muskopf / flickr / CC BY-NC 2.0
Мозг овцы. Фото (в цвете): Shannan Muskopf / flickr / CC BY-NC 2.0

И что же оказалось? У мелкого рогатого скота в коре больших полушарий, а также в подкорковых структурах делящихся предшественников нервных клеток нет. Повод расстраиваться? Отнюдь. Ведь зато там есть нейроны, появившиеся еще в ходе эмбрионального развития и сохранившие множество структурных и биохимических признаков незрелых нервных клеток. Что самое интересное, их число с возрастом не падает!

Какую функцию эти «незрелые» нейроны выполняют, пока не понятно. Но важно то, что у овец они присутствуют в тех областях мозга, что у человека отвечают за мышление (кора больших полушарий), сознание (подкорковая структура под названием ограда, или клауструм) и эмоции (амигдала). Так что есть весомые основания полагать, что для умных, крупных и долгоживущих млекопитающих, в том числе и нас с вами, гораздо важнее и нужнее «незрелые» нейроны в «продвинутых» регионах мозга, а не образование новых клеток в древнем гиппокампе.

Научные войны

Времена, когда богатые лорды жили за счет своих имений и занимались наукой на досуге, давно прошли. Теперь практически в любой стране, где ведутся научные исследования, на них действуют законы рынка. Современные ученые — такие же работники, как и обитатели офисов или операторы токарных станков. Они должны выдать определенный результат (научную статью, а лучше много, да в престижных журналах) за заданный промежуток времени (срок действия гранта). От прочих работников они отличаются лишь тем, что деньги — то есть гранты — за труд им дают еще до выполнения поставленных задач, авансом. Но чтобы этот аванс получить, нужно обосновать значимость своей работы для общества. А зачем обществу биологические исследования? Разве что для медицинских целей. Вот и пишут ученые в заявках на гранты: «Найдем предшественники нейронов в гиппокампе или еще где-то, и если найдем, то будем их вводить в мозги больных Альцгеймером или инсультом, у них появятся новые нервные клетки, работа мозга восстановится, и все заживут счастливо»…

Подобные заявления, как правило, в момент их написания имеют крайне незначительное отношение к реальности. До сих пор введение предшественников нервных клеток в мозг больных инсультом, паркинсонизмом и другими неврологическими заболеваниями ни разу не дало статистически значимых результатов. Да, испытуемым не становилось хуже, но и улучшений заметно не было, а ведь исследования ведутся уже не одно десятилетие.

Так что не важно, кто прав, а кто ошибся в вопросе реальности нейрогенеза у взрослых людей — авторы новой статьи или их коллеги (взгляните на число публикаций об исследованиях нейрогенеза у человека, составленном канадским нейробиологом Джейсоном Снайдером, который еще и написал синопсис обсуждаемой статьи в Nature). На нашем веку в медицине от этого ничего не изменится. Однако если для вас важнее получение нового знания как такового, а его практическая польза или светлое будущее человечества вас волнуют куда слабее, то такой расклад смущать не должен. Наличие двух противоположных точек зрения, подкрепленных эмпирическими свидетельствами, говорит о крайне плодотворной ситуации, которая неизбежно в скором времени создаст прорыв в нашем понимании развития и функционирования нервной системы.

Добавить в закладки
Комментарии
Вам понравилась публикация?
Расскажите, что вы думаете, и мы подберем подходящие материалы
Фрагмент Королевских ворот в Хаттусу, столицу Хеттской империиStylone / Фотодом / Shutterstock

Бронзовый коллапс, или Куда делись все эти люди

Чем был вызван кризис средиземноморских цивилизаций три тысячи лет назад

В конце второго тысячелетия до нашей эры в Греции и на Ближнем Востоке — в Месопотамии, в Древнем Египте, в Сирии, в Малой Азии — творились очень странные дела. Великие царства бронзового века одно за другим уходили в небытие, из ниоткуда появлялись новые народы, хроники повествовали о нашествиях, голоде и прочих бедствиях. Историки долго предпочитали винить во всем «народы моря», но теперь, благодаря археологическим данным, полученным в последние годы, у нас, кажется, есть основания иначе отвечать на вопрос, кто виноват в коллапсе «бронзовых» цивилизаций.
Добавить в закладки
Комментарии

Как рассказывает профессор Эрик Клайн из Университета Джорджа Вашингтона, директор Капитолийского археологического института, автор книги «1177 BC: The Year Civilization Collapsed», Средиземноморье позднего бронзового века представляло собой мир, очень похожий на современный, — глобализованное пространство с торговыми нитями, опутавшими всю ойкумену, то есть все страны, составлявшие на тот момент европейскую цивилизацию.

Торговые и культурные связи второго тысячелетия до нашей эры обеспечивали единый высокий технологический уровень городов Греции и Ближнего Востока во всем: в кораблестроении, в архитектуре, в обработке металлов. Чтобы показать протяженность и устойчивость торговых путей бронзового века, достаточно сказать, что олово для выплавки бронзовых изделий поступало, скорее всего, из Афганистана, а медь брали на Кипре.  Города были оснащены системами водоснабжения, инженерный уровень которых античным грекам тысячу лет спустя и не снился.

Все это откатилось назад со страшной скоростью в кратчайшие по меркам истории сроки, чтобы сбросить с древнего мира бронзовый век и позволить ему войти в новый век — железный, в ту историю, которую мы изучаем в школе.

За относительно короткое время — в древнеегипетских надписях зафиксирован промежуток от 1207 до 1177 года до нашей эры — весь прекрасный бронзовый мир растворяется. Торговые связи рушатся. Из известных нам царств бронзового века в более-менее нетронутом виде остается Египет, который теряет контроль над Сирией и Палестиной. Вавилон и Ассирия сохраняют разве что локальное значение. Исчезает микенская цивилизация. Разрушена Троя. [ ... ]

Читать полностью

Человек в одиночестве и вокруг него

Почему одиночество — общественно значимая проблема и как ее решать

В январе 2018 года министр спорта и гражданского общества Великобритании Трейси Крауч обзавелась новой обязанностью, став «министром по вопросам одиночества», чтобы решать проблему, выросшую до масштабов страны. Впрочем, проблему ли? Экономисты, социологи, психологи, биологи — все видят в одиночестве что-то свое. Корреспондент «Чердака» разобралась, нормально ли страдать от одиночества человеку, обществу и всему виду Homo sapiens.
Добавить в закладки
Комментарии

Мы говорим: «Мне одиноко», говоря о своем переживании. Мы говорим: «Он одинок» — о том, кто живет или любит быть один, но не подразумеваем автоматически, что этому «одинокому» одиноко. Иногда на одиночество жалуются те, кто, казалось бы, не обделен социальными связями. И наоборот, отшельник, живущий в глухой тайге, может быть доволен жизнью и не страдать от отсутствия контактов с себе подобными.

Чтобы не запутаться во всех этих нюансах, в социальных науках выделяют несколько разновидностей одиночества. Если человек не контактирует или мало контактирует с другими, говорят о социальной изоляции. Если человек контактирует с окружающими достаточно, но все равно ощущает себя всеми покинутым, это отчуждение. А если он просто живет один или чувствует себя превосходно независимо от количества контактов — это уединенность.

Британских политиков тревожат первые две разновидности одиночества. «Правда в том, что это не единичная проблема: она касается всех возрастных групп, людей с инвалидностью и без нее, молодых мам, беженцев, людей с близкими семейными связями и без них. Тут нет единственного или простого решения…» — написала Крауч в своем фейсбуке после того, как стало известно о ее новом статусе. По данным британского Красного Креста, в Великобритании от одиночества страдает девять миллионов, или каждый седьмой житель страны. Общественность США беспокоит изоляция и сопутствующее этому снижение качества жизни пожилых людей: треть из них сообщают о своем одиночестве. Проблема актуальна и в скандинавских странах. Можно было бы подумать, что в деле замешан свойственный западной культуре индивидуализм. Но нет, о тяготах одиночества сообщают молодые люди и в азиатских странах, таких как Индонезия, Непал или Мальдивы.

В России централизованных исследований социальной изоляции и одиночества пока не проводилось. Можно лишь косвенно судить о количестве людей, которые могли бы чувствовать себя одиноко. Согласно данным переписи 2010 года, всего частных домохозяйств, состоящих из одного человека, в стране было 14 018 754 (что составляет около 26% от числа частных домохозяйств вообще). О душевном состоянии этих людей и числе их социальных контактов статистика умалчивает. Так что пока тема российского одиночества представлена в основном в публицистике — например, в контексте обсуждения пресловутой «женской доли» в рунете. Давайте посмотрим, что говорят об этом феномене научные исследования и заодно разберемся, почему британцы решили всерьез заняться своим одиночеством. [ ... ]

Читать полностью

Утро вечера мудрёнее

Что думают российские сомнологи о природе и функции сна

В середине марта российские ученые и медики два дня делились друг с другом методиками лечения апноэ и способами измерить мозговую активность спящих крыс в рамках конференции «Сон-2018» в медицинском научно-образовательном центре МГУ. Корреспондент «Чердака» послушал доклады и выяснил, что сон нам, безусловно, нужен, но зачем именно — все еще неясно.
Добавить в закладки
Комментарии

Механизмы сна и бодрствования интересовали человека с глубокой древности, но их изучение ограничивалось, как правило, простым наблюдением. В 1729 году французский ученый Жан-Жак Дорту де Меран обнаружил 24-часовой цикл закрывания и открывания листьев у растения, что можно считать первым исследованием циркадных ритмов, управляемых внутренними биологическими часами. В XIX веке зародилась экспериментальная сомнология, одним из пионеров которой была российский физиолог Мария Манасеина, проводившая опыты с щенками по депривации сна. Но методика, дающая наиболее полные сведения о состоянии спящего человека — полисомнографическое исследование, появилась только в середине XX века.

В 1953 году произошло важное открытие не только для сомнологии, но и для нейронаук в целом: американские физиологи Натаниэль Клейтман и Юджин Асерински обнаружили, что сон человека — это не монотонное состояние, противоположное бодрствованию, а чередование двух разных состояний.

— При этом единой терминологии нет. Каждое профессиональное сообщество использует свои диалекты. В России еще со времен СССР принято разделение на медленный (медленноволновой) и быстрый (быстроволновой) сон. Эти состояния отличаются друг от друга глубинными механизмами столь же сильно, как и каждое из них от бодрствования, — говорит Владимир Ковальзон, председатель правления Национального сомнологического общества, главный научный сотрудник Института проблем экологии и эволюции им. А.Н. Северцова РАН.

Один из определяющих критериев разделения сна на быстро- и медленноволновой — разная частота волн электрической активности головного мозга, которая регистрируется в виде электроэнцефалограмм (ЭЭГ). В то же время в США принято быстрый сон называть REM-sleep (от англ. rapid eye movement sleep — сон с быстрыми движениями глаз), а медленный — non-REM (non-rapid eye movement sleep, т.е. сон без быстрых движений глаз), что указывает на еще один определяющий признак фаз сна: при быстром сне глаза человека под закрытыми веками быстро двигаются, а при медленном — медленно или вовсе остаются неподвижными. [ ... ]

Читать полностью