Текст уведомления здесь

Турбодетандер, шустрый гелий и спасенный Ландау

Что еще мы знаем о Петре Капице

17 октября 1978 года советский ученый Петр Капица получил Нобелевскую премию за работы по физике низких температур. А чем еще он нам запомнился?
Добавить в закладки
Комментарии

Магнитные поля и Капица в рамках погрешности

Капица — ученик сразу двух ученых, почитаемых за «отцов физики». Первым был Абрам Иоффе, воспитавший первое поколение советских физиков: кроме Капицы у него, например, учились Курчатов, Семенов, Александров. Вторым — Эрнест Резерфорд, среди воспитанников которого 12 (!) нобелевских лауреатов по физике и химии, включая и самого Капицу. К Резерфорду Капица отправился в 1921-м, по рекомендации Иоффе.

На этом фото 1916 года — участники семинара Иоффе в Политехническом институте; двое из них станут нобелевскими лауреатами: сначала Николай Семенов (справа, в первом ряду), потом Капица (тоже справа, во втором ряду)
На этом фото 1916 года — участники семинара Иоффе в Политехническом институте; двое из них станут нобелевскими лауреатами: сначала Николай Семенов (справа, в первом ряду), потом Капица (тоже справа, во втором ряду)

Впрочем, для того чтобы таки стать сотрудником легендарной Кавендишской лаборатории, Капице пришлось Резерфорда убеждать — лорд ссылался на то, что ставок у него для нового сотрудника нет. Как вспоминал потом Капица, диалог их выглядел следующим образом:

— Какую точность Вы считаете приемлемой в своей работе?

— Два-три процента.

— В таком случае один лишний исследователь не будет заметен, он будет поглощен допустимой неточностью опыта.

С этим Резерфорд не смог не согласиться, и молодой физик стал заниматься исследованиями под его началом.

На тот момент передним краем физики было изучение свойств атомов и развитие квантовой механики — магнитные поля в этом играли ключевую роль.

Магнитное поле отклоняет в сторону заряженные частицы и меняет структуру энергетических уровней в атомах. Наблюдение за этими явлениями позволило физикам разработать фундаментальную теорию микромира, но для этого пришлось решить ряд чисто инженерных задач.

Современные бытовые магниты — скажем, в динамиках или жестких дисках — создают поле около одного тесла. В аппарате для МРТ бывают поля до десяти тесла. Такие магниты уже далеко не просты в обращении: на гаечный ключ вблизи томографа будет действовать сила, достаточная для отрыва от земли груза в центнер!

Капица в Кавендишской лаборатории смог получить, пусть и на короткое время, поле в пятьдесят тесла. Конечно, сейчас есть магниты, создающие поле в 100 тесла, и даже установки, которые позволяют получить более двух с половиной тысяч тесла (с разрушением магнита и всего вокруг), но для 1920-х это был выдающийся результат.

Успех этот был столь впечатляющим, что уже в 1930 году Капица, еще недавно чуть было не «завернутый» Резерфордом, получил уже свою собственную лабораторию.

Портрет Капицы и Николая Семенова кисти Бориса Кустодиева, 1921 год. Будущие нобелевские лауреаты заявили художнику, что они только «пока» не знамениты — и оказались правы
Портрет Капицы и Николая Семенова кисти Бориса Кустодиева, 1921 год. Будущие нобелевские лауреаты заявили художнику, что они только «пока» не знамениты — и оказались правы

Самое холодное вещество в мире

Довольно быстро Капица стал признанным физиком-экспериментатором, способным проводить тонкие и сложные опыты. В 1930-е годы он занялся темой, требовавшей экстраординарных навыков, — изучением жидкого гелия и процессов при сверхнизких температурах.

Работать с гелием сложно по целому ряду причин, начиная от его дороговизны и заканчивая тем, что в жидком виде он имеет температуру всего на четыре градуса выше абсолютного нуля. Капице и британским физикам Джону Аллену и Остину Майзнеру удалось не просто измерить характеристики жидкого гелия, но открыть новое состояние вещества, сверхтекучую жидкость.

Сверхтекучий гелий утрачивает вязкость и без сопротивления протекает через отверстия шириной всего в три атома, а еще может вытечь из емкости, «вскарабкавшись» по смачиваемой стенке. Теоретический анализ этого феномена позволил продвинуться в разработке квантовой теории. В 1978 году Капицу наградили за открытие Нобелевской премией. А теория сверхтекучести собрала целых две Нобелевки с интервалом в 40 лет, причем обе ушли в том числе ученым из России: Льву Ландау, Виталию Гинзбургу и Алексею Абрикосову (последний с 1991 года жил и работал в США).

Говоря о выборе физики низких температур в качестве своей области, Капица в 1974 году написал следующее (орфография сохранена):

«Когда мы изучаем вещество при комнатной температуре, квантовая природа процессов не может обычно выявляться. Тепловое движение атомов как бы стушевывает те особенности в процессах, которые накладываются их квантовой природой, и они неощутимы. Это так же, как если бы на качающемся в море корабле мы вздумали изучать на биллиардном столе законы соударений шаров. Очевидно, эта затея осуществима только тогда, когда море спокойно. Так и при изучении квантовой природы явлений течения процессов, происходящих в конденсированном состоянии. Только тогда они себя полностью проявляют, когда тепловое движение атомов достаточно мало. Отсюда очевиден тот большой интерес в физике к изучению явлений в веществе при очень низких температурах».

Турбодетандер и подача кислорода

Петр Капица занимался не только и даже не столько чистой физикой, сколько передовыми технологиями. Его возвращение в СССР, кстати, не было добровольным: ученому просто не дали вернуться в Великобританию из короткой поездки в 1934 году, аннулировав его визу (а в то время они были и на выезд из страны). Капицу «приземлили» с расчетом на его участие в прикладных исследованиях.

Физик действительно добился важных результатов, после того как поставил встречное требование советскому правительству и заставил перевезти свою британскую лабораторию со всем оборудованием (а там были инновационные приборы). Работая с низкими температурами, Капица радикально усовершенствовал турбодетандер, устройство для охлаждения газа.

В этом устройстве газ раскручивает турбину и из-за этого остывает, пока не превратится в жидкость. Сжижение — самый удобный и дешевый метод получения кислорода, который конденсируется до азота и других газов. Чистым кислородом продувают печи на сталелитейных заводах, его используют в производстве взрывчатки, как окислитель для ракетных двигателей, в медицине, для сварки и много где еще.

В 1930-е годы лучшие турбодетандеры делала немецкая фирма Linde, но их КПД не достигал и 60%. Найденные Капицей решения позволили превысить отметку 90% и обойтись без импортного оборудования. Последнее оказалось критически важным в военные годы.

Высокие температуры

Эксперименты с низкими и очень низкими температурами прославили Капицу, но когда ему присудили Нобелевскую премию, он занимался предметом совсем другого толка, высокотемпературной плазмой. Вопреки правилам темой его нобелевской лекции стали управляемый термоядерный синтез и плазма. «Эти работы я сделал 40 лет назад, и я их забыл», — ответил физик на предложение рассказать про сверхтекучесть.

Еще Капица предложил гипотезу происхождения шаровой молнии. Согласно ей, шаровая молния подпитывается энергией за счет внешнего микроволнового излучения, которое каким-то образом возникает во время гроз. Физик отмечал, что источник этого излучения неясен, но, если допустить его наличие, поведение шаровой молнии вполне объяснимо даже в части проникновения плазменного сгустка сквозь оконное стекло или иные тонкие препятствия.

Эту гипотезу, в отличие от многого другого из научного наследия ученого, не удалось ни подтвердить, ни опровергнуть. Теории, объясняющей природу шаровой молнии, нет и по сей день. Редкость явления не позволяет изучить его в природных условиях, а все попытки создать нечто подобное в лаборатории успехом не увенчались. Правда, можно смело отвергнуть предположение, что светящийся объект лишь галлюцинация. На сегодня есть и видеозаписи, и даже данные о спектрах шаровой молнии.

Борьба за коллег и принципиальность

Капица писал, что после вынужденного возвращения в СССР его поначалу недолюбливали. Во-первых, ученый открыто требовал приличных условий для работы: отдельного здания под институт и выкупа британского оборудования. Во-вторых, он этого добивался и получал больше, чем многие другие физики.

Однако спустя некоторое время он получил признание не только как хороший исследователь и грамотный организатор — Капицу стали уважать за стойкость. Когда Льва Ландау арестовали за составление листовок, где Сталин сравнивался с Гитлером (!), Капица добился освобождения ученого под свою ответственность. В разгар репрессий это был крайне рискованный шаг, но ни Капицу, ни большинство его сотрудников НКВД не трогало.

Капица вел переписку с иностранными коллегами и обращался к руководителям страны вплоть до самого Иосифа Сталина, указывая, как стоит развивать науку и технологии. В 1946 году он ушел из атомного проекта и попал в опалу до самой смерти Сталина и ареста Берии, но опять-таки не был арестован или убит.

В Институте физических проблем Капица, будучи директором и основателем, пошел против советских принципов хозяйствования. Чтобы разделаться с грязью, он уволил двух дворников и втрое поднял оклад оставшемуся. А когда создаваемая Капицей система подготовки будущих инженеров не прижилась в МГУ, тамошний физико-технический факультет сделали отдельным Московским физико-техническим институтом, МФТИ.

Капица был талантлив, обладал организаторскими способностями, у него были дипломатические навыки и гражданская позиция. Сочетание этих качеств выделяло его даже среди нобелевских лауреатов.

Добавить в закладки
Комментарии
Вам понравилась публикация?
Расскажите, что вы думаете, и мы подберем подходящие материалы
Фрагмент Королевских ворот в Хаттусу, столицу Хеттской империиStylone / Фотодом / Shutterstock

Бронзовый коллапс, или Куда делись все эти люди

Чем был вызван кризис средиземноморских цивилизаций три тысячи лет назад

В конце второго тысячелетия до нашей эры в Греции и на Ближнем Востоке — в Месопотамии, в Древнем Египте, в Сирии, в Малой Азии — творились очень странные дела. Великие царства бронзового века одно за другим уходили в небытие, из ниоткуда появлялись новые народы, хроники повествовали о нашествиях, голоде и прочих бедствиях. Историки долго предпочитали винить во всем «народы моря», но теперь, благодаря археологическим данным, полученным в последние годы, у нас, кажется, есть основания иначе отвечать на вопрос, кто виноват в коллапсе «бронзовых» цивилизаций.
Добавить в закладки
Комментарии

Как рассказывает профессор Эрик Клайн из Университета Джорджа Вашингтона, директор Капитолийского археологического института, автор книги «1177 BC: The Year Civilization Collapsed», Средиземноморье позднего бронзового века представляло собой мир, очень похожий на современный, — глобализованное пространство с торговыми нитями, опутавшими всю ойкумену, то есть все страны, составлявшие на тот момент европейскую цивилизацию.

Торговые и культурные связи второго тысячелетия до нашей эры обеспечивали единый высокий технологический уровень городов Греции и Ближнего Востока во всем: в кораблестроении, в архитектуре, в обработке металлов. Чтобы показать протяженность и устойчивость торговых путей бронзового века, достаточно сказать, что олово для выплавки бронзовых изделий поступало, скорее всего, из Афганистана, а медь брали на Кипре.  Города были оснащены системами водоснабжения, инженерный уровень которых античным грекам тысячу лет спустя и не снился.

Все это откатилось назад со страшной скоростью в кратчайшие по меркам истории сроки, чтобы сбросить с древнего мира бронзовый век и позволить ему войти в новый век — железный, в ту историю, которую мы изучаем в школе.

За относительно короткое время — в древнеегипетских надписях зафиксирован промежуток от 1207 до 1177 года до нашей эры — весь прекрасный бронзовый мир растворяется. Торговые связи рушатся. Из известных нам царств бронзового века в более-менее нетронутом виде остается Египет, который теряет контроль над Сирией и Палестиной. Вавилон и Ассирия сохраняют разве что локальное значение. Исчезает микенская цивилизация. Разрушена Троя. [ ... ]

Читать полностью
Черенковское излучение вокруг ядерного реактораAaron Frank

Быстрее света

За что советские ученые получили Нобелевскую премию по физике в 1958 году

28 октября 1958 года советским ученым была впервые присуждена Нобелевская премия по физике — за открытие и истолкование эффекта Черенкова. «Чердак» коротко рассказывает о том, кто были эти ученые и что это за эффект.
Добавить в закладки
Комментарии

В 1933 году Павел Черенков и Сергей Вавилов (первый был аспирантом у второго) в лаборатории Физико-математического института обнаружили ранее неизвестное явление. Чистая вода без всяких примесей начинала светиться под действием радиации. Как показали дальнейшие наблюдения, дело было в очень быстро движущихся заряженных частицах.

Излучение Вавилова — Черенкова возникает, когда частица движется быстрее скорости света в плотной среде. Слова «быстрее скорости света» тут не ошибка: принципиально нельзя превысить лишь скорость света в вакууме, а вот во всех материалах свет движется медленнее, чем в вакууме, и это уже вовсе не фундаментальное ограничение. Частица, разогнанная в вакууме, вполне может влететь в воду со скоростью, например, 299 791 километр в секунду, в то время как для воды предел составляет около 225 тысяч километров в секунду. А для оптического стекла это значение еще меньше: некоторые сорта замедляют свет до 140 тысяч км/с, то есть свет распространяется в них вдвое медленнее! [ ... ]

Читать полностью
Квазар ULAS J1342+0928: его частью является сверхмассивная черная дыра "весом" в 800 миллионов СолнцИллюстрация: Robin Dienel / Carnegie Institution for Science

Темная материя и энергия провалились в черную дыру

Не исключено, что на самом деле никакой темной материи и энергии в их привычном представлении не существует

Недавно опубликованное исследование российских физиков заставляет совершенно по-новому взглянуть на происхождение и природу темной материи и темной энергии. Модель темной материи из неизвестных частиц, равно как и темной энергии неясной природы, слишком сильно укоренилась в сознании многих исследователей. Но, если высокочастотные гравиволны, предсказанные гипотезой Горькавого, будут найдены, с привычной моделью придется попрощаться
Добавить в закладки
Комментарии

Объяснить черты наблюдаемой части космоса на основании только видимой его части нереально. Что-то невидимое заставляет «края» галактик вращаться с большей скоростью, чем «положено»; другая «невидимая рука», кажется, растягивает пространство-время во все стороны все быстрее и быстрее (ускоряющееся расширение Вселенной). За открытие этих фактов уже успели многажды выписать Нобелевские премии, а на поиски соответствующих «темных сил» ушли миллиарды долларов. Но есть нюанс: вполне вероятно, никаких частиц темной материи на самом деле не существует, а ускоряющееся расширение Вселенной и вовсе может оказаться иллюзией. Невидимая масса, раскручивающая галактики, — это множество черных дыр средних размеров, а кажущееся ускорение расширения обеспечивает гигантская черная мегасверхдыра. Но — обо всем по порядку.

Очень темные дела

Еще в 1884 году лорд Кельвин обратил внимание на странный факт: звезды во внешних областях диска нашей Галактики вращаются вокруг ее центра куда быстрее, чем должны были бы, судя по расчетам. Такое возможно, если их «раскручивает» гравитация какой-то массы, лежащей еще дальше, там, где кончаются звезды и начинается межгалактическое пространство. Но что лежит там, где кончаются звезды, понять не удавалось. Известнейший французский математик Анри Пуанкаре, обсуждая этот вывод Кельвина, в 1906 году впервые употребил словосочетание «темная материя». Последующие сто лет подтвердили: практически во всех наблюдаемых галактиках картина та же.

Гипотез о том, что именно составляет темную массу, было много, но большинство из них плохо совместимо с наблюдаемой Вселенной. Со временем была выбрана одна — о «холодной темной материи», теоретически состоящей из массивных частиц (вимпов), не взаимодействующих с фотонами света. Причем в такой гипотезе масса вимпов должна быть в несколько раз больше, чем всего обычного, барионного, вещества. Это хорошо объясняло и невидимость темной материи, и ее мощное воздействие на галактические диски. [ ... ]

Читать полностью