Текст уведомления здесь

Узреть невидимое

Почему люди не видят ультрафиолет и как язык меняет восприятие цветов

У многоклеточных животных органы зрения (или хотя бы клетки, воспринимающие освещение) есть почти всегда — конечно, в том случае, если организм живет не под землей и не у морского дна. Каков механизм видения, как язык влияет на зрение и почему люди не видят в ультрафиолете — обо всем этом в тексте «Чердака».
Добавить в закладки
Комментарии
Чтобы получать выгоду от окружающего мира и избегать его опасностей, надо хоть что-то об этом мире знать. Поэтому даже у примитивных сидячих животных, неподвижных и со всех сторон одинаковых, есть чувствительные клетки или целые органы. Они собирают данные об окружающей среде, и уже на основе этих данных животные совершают наиболее подходящие действия.

Организмы научились отличать свет от тьмы очень давно. Для многих животных, в том числе и людей, зрение — основной источник информации об окружающем мире. Как же устроен этот процесс?

В первом приближении глаз позвоночных и головоногих моллюсков (одни из самых продвинутых существ в «параллельной» с нами ветке эволюции) устроен как фотоаппарат. Есть линза (хрусталик), есть отверстие, через которое свет попадает на линзу (зрачок). Наконец, есть фотопластинка (или матрица у современных фотоаппаратов) — сетчатка. Чувствительные клетки (фоторецепторы) в ее составе активируются при падении света определенной длины волны. Для каждого типа клеток сетчатки диапазон оптимальных длин волн свой.

Глаз — очень сложная структура, и для полноценного зрения нужно, чтобы хорошо работали все ее элементы. Фото: Alexilus/shutterstock


Есть две большие группы фоторецепторов — палочки и колбочки. Палочки активировать легко, для этого не нужна сильная освещенность. Но и четкость изображения они дают слабенькую. В этом легко убедиться, если пойти ночью в лес без фонарика: что-то видно, но лишь в общих чертах. А еще совершенно непонятно, какого цвета окружающие предметы. Для распознавания цветов и их оттенков нужны колбочки. Эти рецепторы активировать сложнее, и работают они только при хорошем освещении.

Разные типы колбочек отвечают за распознавание различных цветов, реагируя на свет в узком диапазоне длин волн. Поэтому иметь какой-то один тип колбочек бессмысленно: «палочные сумерки» просто приобретут тот или иной оттенок. Это непрактично и опасно: с таким зрением, например, невозможно будет отличить спелые плоды от неспелых, а незрелые фрукты могут быть ядовитыми. Так что зрячие животные обзавелись минимум двумя типами колбочек.

«У человека три типа колбочек и один тип палочек, — поясняет Павел Максимов, кандидат биологических наук, старший научный сотрудник лаборатории обработки сенсорной информации ИППИ РАН. — Даже если бы у нас был всего один тип колбочек и палочки, мы, возможно, могли бы различать цвета, но только при сумеречном освещении, при котором функционируют и палочки, и колбочки. Кроме самих рецепторов нужна соответствующая обработка сигнала. Например, если сигналы от рецепторов разных типов просто сложить, никакой информации о цвете не останется. Зрительная система должна уметь сравнивать сигналы от разных рецепторов, чтобы определить, что сигнал от коротковолновых («синих») колбочек сильнее или слабее, чем от длинноволновых («красных»)».

Палочки (слева) и колбочки весьма небольшие: их длина не превышает 0,06 миллиметра. Фото: Designua/shutterstock



Колбочки и эволюция

Если животное ориентируется в основном на зрение, ему хорошо бы уметь различать множество разных оттенков, а для этого нужно больше двух типов колбочек.

Колбочный рекордсмен — рак-богомол. У этого своеобразного создания 12 типов колбочек. Оно видит ультрафиолет и определяет поляризацию света (неэквивалентность излучения по различным направлениям в плоскости, перпендикулярной лучу света). По всей видимости, такое многообразие зрительных ощущений помогает ракам размножаться: самцы могут передавать самкам и самцам-конкурентам сигналы, основанные на разной поляризации световых лучей.

Сколько оттенков различают эти ракообразные, не вполне понятно: что рак-богомол различает два световых пучка, только если длины их волн отличаются на 15 нанометров и более. Для сравнения: человек воспринимает два цвета как разные, если длины их волн различаются всего на 1-2 нанометра. Вероятно, дело в том, что нервная система человека куда искуснее «обрабатывает» зрительные сигналы.

Рак-богомол очень необычен не только снаружи, но и внутри. Фото: Olgysha/shutterstock


У других представителей животного царства набор колбочек поскромнее, но многие из них тоже могут определять поляризацию света. Среди умеющих это делать — птицы, рептилии и многие насекомые: у них по четыре типа колбочек. А вот у млекопитающих, лягушек и тритонов эти рецепторы всего двух типов — остальные общий предок амфибий и зверей утратил. Тем не менее некоторые звери, например кошки и собаки, могут видеть ультрафиолет. Ревунам и обезьянам Старого Света, в том числе людям, удалось «восстановить» третий тип колбочек (на самом деле, заполучить новый) за счет дупликации (удвоения) генов зрительных пигментов. Кстати, столько же вариантов колбочек и у рыб, но у них нет коры головного мозга, поэтому обработка сигнала намного менее совершенна.

«Если рассматривать зрительную систему как черный ящик, то общим свойством у рыб и обезьян является так называемая поправка на освещение, — рассказывает Максимов. — Зрительная система воспринимает не цвета излучений, приходящих в глаз, а окраску наблюдаемых предметов. При изменении освещения меняются спектры отраженных от предметов излучений, но зрительная система вносит поправку на цвет источника освещения, и воспринимаемые цвета предметов остаются такими же. Это свойство зрительной системы называется константностью цветовосприятия». Именно благодаря этой особенности зрения возник «феномен платья»: фотография, которую разные люди видели в разных цветах в зависимости от того, какой базовый цвет мозг «вычитал» из фона.

Платье, поссорившее половину интернета, случайно оказалось отличной иллюстрацией того самого принципа «вычитания» цвета фона.


Интересно, что некоторые опыты на птицах показали, что у птиц нет поправки на освещение. Получается, что они воспринимают не цвета предметов, а цвета отраженных от них излучений. «По-видимому, наличие в зрительной системе птиц четырех типов колбочек позволяет им пользоваться каким-то альтернативным механизмом константности цветовосприятия для узнавания предметов по их окраске», — говорит Максимов.

А как у людей?

Несмотря на некоторые различия, нейрофизиология цветовосприятия у позвоночных в общих чертах одинакова. Это означает, что данные, которые были получены при изучении работы структур глаза и головного мозга, отвечающих за зрение у рыб, кошек, обезьян и прочих, можно с некоторыми поправками переносить на человека. Но некоторые аспекты цветовосприятия можно проконтролировать и изучить только на людях. Например, как на способность различать цвета влияет язык.

В каждом языке набор слов для обозначения цветов свой, и он во многом зависит от окружающих условий, в которых развивался тот или иной народ. Например, в языках эскимосов слов, обозначающих снег, гораздо больше, чем у жителей Сахары. В первой половине XX века лингвисты Эдуард Сепир и Бенджамин Ли Уорф выдвинули гипотезу, что северные народы различают больше оттенков белого, чем те, кто видит снег только изредка. Впрочем, некоторые опыты доказывают, что структура языка, если и влияет на восприятие человеком мира (а не наоборот), то лишь отчасти.

Например, одно из недавних российских исследований показывает, что люди из разных культур различают цвета одинаково успешно. Китайцы и русские (речь идет о горожанах) показывали схожие результаты, когда им на мониторе предъявляли десятки пар точек, выбранных из 25 различных цветов. Тем не менее на картинах и графике китайских художников оттенки более приглушенные и чаще встречаются черно-белые изображения. На полотнах русских творцов цвета намного сочнее.

Кстати, цветность картин — не единственное «зрительное» отличие китайской культуры от русской. Например, в китайском и японском отдельные слова для синего и зеленого появились не так давно: в этих языках до сих пор есть слова, обозначающие одновременно оба эти цвета. Тем не менее мозг представителей этих народностей реагирует на синий и зеленый по-разному.

Цвета на полотнах китайский художников часто приглушенные и неяркие. Картина кисти T'ang Yin, 1523 год


Судя по всему, число слов, обозначающих различные «базовые» цвета, зависит не только от условий жизни носителей языка, но и от того, насколько развит этот конкретный язык. В простейших языках по-разному называются только черный и белый. При этом под белым имеют в виду также желтый и красный, а под черным — синий и зеленый, других слов для обозначения цветов нет. В большинстве известных языков следом за черным и белым появляется отдельное слово для красного (при этом красными считаются и желтые предметы). На третьей стадии в пяти из шести произвольно выбранных языков возникает специальное наименование зеленого, под которым в этот момент подразумевают и синий тоже. В ряде исключений зеленый не отделяется от черного и синего, зато начинают различаться ранее «сцепленные» желтый и красный. Наименование синего цвета появляется в этом ряду шестым. Посмотреть, какой язык на какой «цветовой» стадии развития находится, можно здесь.

Мужское и женское

Несмотря на то что тема равенства полов стала очень модной, по части восприятия цветов мужчины и женщины заметно различаются. Скажем, нарушения цветового зрения чаще бывают у мужчин. И дело здесь не только в том, что гены, мутации в которых вызывают потерю какого-нибудь типа колбочек, расположены на Х-хромосоме, которая у сильного пола одна.

Восприятие цветов, как и звуков, зависит от уровня тестостерона в организме. У самых женственных мужчин рецепторов к этому гормону в разы больше, чем у самых крепких женщин. И в частности, их очень много на нейронах головного мозга, особенно в затылочной доле коры — там, куда приходят зрительные сигналы. В итоге у мужчин образуется больше связей между нейронами зрительной коры и зрительных зон таламуса, откуда сигналы попадают в затылочные доли. Кроме того, по не до конца ясным причинам мужчины лучше отслеживают быстро сменяющие друг друга мелкие детали, а женщины хорошо различают оттенки близких цветов. Возможно, эти особенности развились у мужчин из-за того, что в древнем обществе они занимались охотой, а женщины собирали растения и грибы.

Охота требовала от древних мужчин умения различать быстро движущиеся детали. Фото: Dieter Hawlan/shutterstock


Исследование 2001 года показало, что среди женщин гораздо чаще встречаются индивидуумы с четырьмя (а не тремя) типами пигментов — молекул, лежащих в основе работы колбочек (в палочках пигменты тоже есть, но другие). Это одна из причин, почему женщина в среднем может назвать больше разных оттенков, чем мужчина. Наконец, колбочки мужчин настроены на свет чуть больших длин волн, чем зрительные рецепторы женщин: по-видимому, сильный пол при прочих равных видит мир более красным.

Цветотерапия

Этот раздел альтернативной медицины учит, что различные заболевания, вплоть до рака, можно лечить, давая больному смотреть на определенный цвет в зависимости от того, что болит. Вот только рекомендации к лечению во многих клиниках разные, общего стандарта нет. А это первый звоночек, что цветотерапия — метод непроверенный. Разумеется, цвета, которые человек видит регулярно, могут влиять на его эмоции и на восприятие мира. Но это верно и для любых других элементов обстановки. А изменение настроения — это еще не лечение, хотя вещь в большинстве случаев полезная.

Некоторые психологи активно используют в практике цветотерапию, но серьезного научного обоснования у этого подхода нет. Фото: Olimpik/shutterstock


***

Хотя зрительная система — одна из самых изученных сенсорных систем, оценить, насколько восприятие цветов изменилось в ходе эволюции и как оно отличается у животных разных видов и внутри видов, непросто. Приходится учитывать и число различных типов зрительных пигментов, и строение сетчатки и зрительных областей мозга, и пол, и даже родной язык — если мы говорим о людях. Словесные описания одного и того же предмета при одинаковом освещении от разных авторов могут заметно отличаться. А если тестировать цветовое зрение, не прибегая к словам (например, выделять «особый квадрат» из десятков одинаковых), выяснится, что два человека могут различать два цвета, но мы никогда не узнаем, что точно они видят при этом. Ну и конечно, нейронные сигналы, возникающие в мозге в ответ на какой-либо цвет, совершенно индивидуальны.

Светлана Ястребова
Добавить в закладки
Комментарии
Вам понравилась публикация?
Расскажите, что вы думаете, и мы подберем подходящие материалы