Текст уведомления здесь

GW170817, или Астрономически важные сто секунд лета

Впервые в истории зарегистрированы гравитационные волны от слияния нейтронных звезд

Впервые в истории человечества астрономы зарегистрировали гравитационные волны от слияния двух нейтронных звезд. Событие в галактике NGC 4993 «почуяли» 17 августа гравитационные обсерватории LIGO/Virgo. Вслед за ними к наблюдениям подключились и другие астрономические инструменты. В итоге за событием наблюдали 70 обсерваторий, и по данным наблюдений сегодня было опубликовано как минимум 20(!) научных статей.
Добавить в закладки
Комментарии

Слухи о том, что детекторы LIGO/Virgo наконец зарегистрировали новое событие и это не очередное слияние черных дыр, поползли по социальным сетям уже 18 августа. Заявления именно о нем ждали в конце сентября, но тогда ученые ограничились лишь сообщением об очередном гравитационно-волновом событии с участием двух черных дыр — оно произошло в 1,8 миллиарда световых лет от Земли, в его наблюдении 14 августа впервые поучаствовали не только американские детекторы, но и европейский Virgo, который «включился» в охоту за колебаниями пространства-времени за две недели до этого.

После этого коллаборация получила свою заслуженную Нобелевскую премию по физике — за детекцию гравитационных волн и подтверждение правоты Эйнштейна, предсказавшего их существование, — и вот теперь поведала миру об открытии, которое приберегла «на сладкое».

Галактика NGC 4993, в которой произошло слияние двух нейтронных звезд. Килоновая находится чуть выше и левее центра галактики. Фото: ESO/A. Grado
Галактика NGC 4993, в которой произошло слияние двух нейтронных звезд. Килоновая находится чуть выше и левее центра галактики. Фото: ESO/A. Grado

Что именно произошло?

Нейтронные звезды — это очень, очень маленькие и очень плотные объекты, которые возникают обычно в результате вспышек сверхновых звезд. Типичный диаметр такой звезды 10—20 км, а масса сравнима с массой Солнца (диаметр которого в 100 000 000 раз больше), так что плотность вещества нейтронной звезды в несколько раз превышает плотность атомного ядра. На сегодняшний момент нам известно несколько тысяч таких объектов, но вот двойных систем — лишь полтора-два десятка.

Килоновая (по аналогии со «сверхновой»), гравитационный эффект которой зарегистрировали LIGO/Virgo 17 августа, находится в созвездии Гидра на расстоянии 130 миллионов световых лет от Земли. Она возникла в результате слияния двух нейтронных звезд массами в диапазоне от 1,1 до 1,6 масс Солнца. О том, насколько близко к нам оказалось это событие, говорит то, что в то время, как сигнал от сливающихся двойных черных дыр обычно находился в диапазоне чувствительности детекторов LIGO в течение долей секунды, сигнал, зарегистрированный 17 августа, длился около 100 секунд.

«Это не первая зарегистрированная килоновая, — сказал в беседе с корреспондентом „Чердака“ астрофизик Сергей Попов, ведущий научный сотрудник Государственного астрономического института им. П.К. Штернберга, — но их перечислить можно было даже не по пальцам одной руки, а чуть ли не по ушам. Их было буквально одна-две».

Почти в то же время, примерно через две секунды после гравитационных волн, космический гамма-телескоп НАСА «Ферми» и Международная орбитальная обсерватория гамма-лучей (INTErnational Gamma-Ray Astrophysics Laboratory/INTEGRAL) зарегистрировали всплески гамма-лучей. В последующие дни ученые зарегистрировали электромагнитное излучение и в других диапазонах, включая рентгеновские, ультрафиолетовые, оптические, инфракрасные и радиоволны.

Получив координаты, несколько обсерваторий уже через несколько часов смогли начать поиск в области неба, где предположительно произошло событие. Новая светлая точка, напоминающая новую звезду, была обнаружена оптическими телескопами, и в итоге около 70 обсерваторий наблюдали это событие в различных диапазонах длин волн.

«Впервые, в отличие от „одиноких“ слияний черных дыр, зарегистрировано „компанейское“ событие не только гравитационными детекторами, но еще и оптическими и нейтринными телескопами. Это первый такой хоровод наблюдений вокруг одного события», — рассказал профессор физического факультета МГУ Сергей Вятчанин, который входит в группу российских ученых, участвовавших в наблюдении за явлением под руководством профессора физического факультета МГУ Валерия Митрофанова.

В момент столкновения основная часть двух нейтронных звезд слилась в один ультраплотный объект, испускающий гамма-лучи. Первые измерения гамма-излучения в сочетании с детектированием гравитационных волн подтверждают предсказание общей теории относительности Эйнштейна, а именно, что гравитационные волны распространяются со скоростью света.

«Во всех предыдущих случаях источником гравитационных волн были сливающиеся черные дыры. Как это ни парадоксально, черные дыры — это очень простые объекты, состоящие исключительно из искривленного пространства и поэтому полностью описывающиеся хорошо известными законами общей теории относительности. В то же время структура нейтронных звезд и, в частности, уравнение состояния нейтронной материи до сих пор точно неизвестны. Поэтому изучение сигналов от сливающихся нейтронных звезд позволит получить огромное количество новой информации также и о свойствах сверхплотной материи в экстремальных условиях», — сказал профессор физического факультета МГУ Фарит Халили, который также входит в группу Митрофанова.

Каково значение этого открытия?

Во-первых, наблюдение за слиянием нейтронных звезд — еще одна наглядная демонстрация эффективности астрономических наблюдений, первопроходцами в которых стали детекторы LIGO и Virgo.

«Это рождение новой науки! Такой сегодня день, — сообщил „Чердаку“ заведующий лабораторией космического мониторинга ГАИШ МГУ и руководитель проекта МАСТЕР Владимир Липунов. — Она будет называться гравитационная астрономия. Это когда все тысячелетние методы астрономии, которые тысячи астрономов применяли многие тысячи лет, нарабатывали, станут полезными для гравитационно-волновой тематики. До сегодняшнего дня все это было чистой физикой, то есть даже фантазией с точки зрения публики, а теперь это уже реальность. Новая реальность».

«Полтора года назад, когда были открыты гравитационные волны, был открыт новый способ изучения Вселенной, изучения природы Вселенной. И этот новый способ уже за полтора года продемонстрировал свою способность давать нам важную, глубокую информацию о разных явлениях во Вселенной. Несколько десятков лет гравитационные волны только пытались детектировать, и тут раз — полтора года назад их детектировали, получили Нобелевскую премию, и теперь прошло полтора года, и действительно показано, что кроме флага, который все поднимали — ага, Эйнштейн был прав! — это действительно работающий уже сейчас, только в начале науки гравитационной астрономии, он оказывается настолько эффективным, чтобы изучать разные явления во Вселенной», — сказал корреспонденту «Чердака» астрофизик Юрий Ковалев, руководитель лаборатории фундаментальных и прикладных исследований релятивистских объектов Вселенной МФТИ, заведующий лабораторией ФИАН, руководитель научной программы проекта «Радиоастрон».

Кроме этого, в ходе наблюдений было собрано огромное количество новых данных. В частности, было зафиксировано, что в процессе слияния нейтронных звезд образуются тяжелые элементы, такие как золото, платина и уран. Это подтверждает одну из существующих теорий происхождения тяжелых элементов во Вселенной. Ранее моделирование уже демонстрировало, что одних только вспышек сверхновых для синтеза тяжелых элементов во Вселенной недостаточно, и в 1999 году группа швейцарских ученых предположила, что еще одним источником тяжелых элементов могут служить слияние нейтронных звезд. И хотя килоновые намного более редки, чем вспышки сверхновых, именно они могут генерировать большую часть тяжелых элементов.

«Представьте себе, вы никогда не находили на улице денег, и тут наконец нашли. И это сразу тысяча долларов, — говорит Сергей Попов. — Во-первых, это подтверждение того, что гравитационные волны распространяются со скоростью света, подтверждение с точностью до 10-15. Это очень важная штука. Во-вторых, это некоторое число чисто технических подтверждений ряда положений общей теории относительности, что очень важно для фундаментальной физики вообще. В-третьих — если вернуться к астрофизике — это подтверждение того, что короткие гамма-всплески — это слияние нейтронных звезд. А что касается тяжелых элементов, то, конечно, не то чтобы в подобное прежде никто не верил. Но не было такого шикарного комплекса данных».

И этот комплекс данных уже в первый день позволил ученым опубликовать, по подсчетам «Чердака», как минимум 20 статей (восемь в Science, пять в Nature, две в Physical Review Letters и пять в Astrophysical Journal Letters). По подсчетам журналистов Science, число авторов статьи, описывающей событие, примерно соответствует трети всех действующих астрономов. Ждете ли вы продолжения? Мы — да.

Добавить в закладки
Комментарии
Вам понравилась публикация?
Расскажите, что вы думаете, и мы подберем подходящие материалы