Спасибо, что вы с нами!

Гравитационную постоянную то ли уточнили, то ли нет

Для разных методов измерения гравитационная константа по-прежнему разная, и физики не знают почему.

Международная группа ученых, куда входил Вадим Милюков из ГАИШ МГУ, попробовала рассчитать значение гравитационной постоянной — важнейшей физической константы, определяющей, как сильно тела притягиваются друг к другу. Исследователи считают, что смогли заметно повысить точность измерения константы.
Добавить в закладки
Комментарии
...

Но у тех же исследователей измерения разными методами с «уточненной» константой все равно дали разные результаты — по неизвестным причинам. Это означает, что гравитационная постоянная и дальше будет оставаться самой «скандальной» из известных физических констант. Соответствующая статья опубликована в Nature.

Фундаментальные константы крайне важны для основных физических расчетов, ведь константа входит в огромное количество формул и, таким образом, именно уровень точности ее измерения определяет уровень точности почти любых физических расчетов. За последние сто лет прогресс в этой области был огромным — например, скорость света измерена с ошибкой в районе четырех миллиардных, что позволяет чрезвычайно точно предсказывать и обнаруживать целый ряд релятивистских эффектов (явления, происходящие при скоростях, сравнимых со скоростью света).

Однако гравитационная постоянная — исключение на этом фоне. Как известно, сила тяготения между двумя телами равна произведению квадратов их массы, деленному на квадрат расстояния между ними и умноженному на G, или гравитационную постоянную. Впервые ее измерил Кавендиш еще в XVIII веке при помощи чрезвычайно простого и остроумного устройства — крутильных весов. Они состоят из двух грузов на коромысле, которое, в свою очередь, подвешено за нитку и может свободно вращаться. Когда к одному из грузов подносят внешнее тело заранее известной массы, его гравитация отклоняет к себе подвешенный груз и нитка, на которой вывешено коромысло, начинает слегка закручиваться.

С этой константой есть сразу две проблемы. Во-первых, измерять ее на крутильных весах точно очень тяжело: гравитационное взаимодействие много слабее электромагнитного и иных, поэтому крутильные весы отклоняются совсем слабо, что затрудняет точное измерение. Во-вторых, попытки по-разному измерить гравитационную постоянную стабильно дают разные результаты. Скажем, с помощью крутильных весов это делают двояко — и так, как мы описали выше, и иначе, когда коромысло крутильных весов до измерения не неподвижно, а свободно вращается туда-сюда, а влияние сторонних гравитирующих тел, подносимых к весам, измеряют по изменению периода вращения таких весов. И вот почему-то первый и второй методы всегда дают слегка разные результаты, а почему — никто не знает.

Поэтому гравитационная постоянная до сих измерена весьма грубо — (6,67408 ± 0,00031)·10−11 м3·кг·с2., на целые порядки хуже других физических констант. Погрешность здесь десятилетиями не падала ниже 47 частей на миллион. Более того, многолетние попытки уже в XXI веке поднять точность измерений привели к скандальным результатам: каждое новое исследование заявляло о том, что подняло точность измерений гравитационной константы. Но каждое из этих исследований отличалось друг от друга на сотни частей на миллион, то есть давало погрешность даже сильнее, чем была до этих исследований. Это беспрецедентная для современной физики ситуация: получается, что константа у всех, кто пытается ее измерить, имеет разные значения, и причины этого неясны. От этого улучшить указанную выше погрешность нельзя: любой учет новых исследований по теме только повысит погрешность. Это особенно странно с учетом того, что каждое из упомянутых исследований продолжалось много лет и использовало целый ряд технически изощренных приемов для снижения погрешностей измерений.

Авторы новой работы в очередной раз попытались решить эту крайне трудную задачу. С этой целью они измерили гравитационную постоянную сразу двумя методами. В первом измерялась частота колебания крутильных весов под действием подносимых тел известной массы (для минимизации ошибок весы поместили в вакуумную камеру). Во втором коромысло крутильных весов и подносимые к нему внешние массы вращались независимо друг от друга, а их угловое ускорение, которое внешние массы оказывали на крутильные весы, измеряли с помощью системы с обратной связью, поддерживающей нить незакрученной — чтобы ее упругие свойства минимально влияли на измерения.

Исследователи полагают, что заметно подняли точность измерений. Они указывают величины в 6,674184(±78)·10^−11 м3·кг^-1 с^-2 для первого метода и 6,674484(±78)·10^−11 м3·кг^-1 с^-2 для второго метода. Легко видеть, что эти результаты заметно различаются, хотя теоретически должны быть одинаковыми. Таким образом, попытка уточнить значение гравитационной константы, с одной стороны, формально удалась: погрешность ее измерения снизили с 47 до менее чем 12 частей на миллион. С другой — разные методы дали расхождение больше, чем в 44 части на миллион, и это при том, что над обоими измерениями работала одна и та же научная группа. Чтобы получить оценку усредненной точности этих двух измерений, они взяли значение, среднее между двумя полученными, но поскольку неизвестно, какое из них все же ближе к истине, оценка все равно получается довольно неточной (в сравнении с другими физическими константами).

Можно с высокой долей вероятности предсказать, что новая работа не приведет к радикальному улучшению ситуации с гравитационной постоянной. Скорее всего, другая работа другой научной группы вскоре даст новые результаты, которые опять будут отличаться в зависимости от используемых методов. На это явным образом указывает то, что даже одна и та же группа (авторы новой работы) получают разные значения этой константы и не могут предложить даже гипотезы о причинах такого расхождения.

Добавить в закладки
Комментарии
...
Вам понравилась публикация?
Расскажите что вы думаете и мы подберем подходящие материалы