Текст уведомления здесь

Как отредактировать биосферу

Что такое генный драйв и как он работает

Что произойдет, если человечество сможет без труда изменять геномы организмов в масштабах целых популяций и даже биологических видов? С легкой руки журналистов генный драйв представляется могущественной и крайне опасной технологией. Но так ли это на самом деле?
Добавить в закладки
Комментарии

Можно считать, что все проявления жизни на планете одинаково прекрасны и имеют равные и неотъемлемые права на существование, но кого мы пытаемся обмануть? Есть организмы, смертельная опасность которых для человека очевидна, а вот полезность для кого-либо в природе, кроме них самих, вызывает сомнения.

Особенно это касается наших паразитов — их скорейшее вымирание можно считать одной из вожделенных задач человечества. Скажем, вирус натуральной оспы с 1977 года официально вымер, и никто по этому поводу особо не страдает. Вот бы повторить этот опыт еще с какой-нибудь заразой! Например, с малярией. Каждый год эта болезнь, вызываемая одноклеточным паразитом Plasmodium falciparum, уносит жизни более 2,7 млн человек, делая своего эксклюзивного распространителя — комара рода Anopheles — самым смертоносным животным на планете. Технология генного драйва теоретически позволяет уничтожить всю мировую популяцию малярийных комаров или генно-модифицировать ее, сделав невозможным перенос плазмодия. Как результат — плазмодий лишается единственного переносчика и вымирает. Мир свободен от малярии, все счастливы. Или все-таки нет?

Упоминания о генном драйве все чаще появляются в заголовках новостей. Одновременно самые серьезные правительственные учреждения мира продолжают тратить целые бюджеты на исследования безопасности этой нашумевшей технологии. Действительно, на первый взгляд ученые получили в руки эдакие садовые ножницы, которыми при необходимости можно уверенно обрезать особенно надоевшие нам ветки древа жизни. Но давайте обо всем по порядку.

Изначально генный драйв был предложен в начале 2000-х под впечатлением от еще совсем недавно открытых «наводящихся эндонуклеаз» (homing endonuclease) Эти ферменты, как и положено любой порядочной эндонуклеазе, режут двойную цепь ДНК на четко обозначенном участке. А сам ген находится внутри такого же участка, ровно посередине — справа и слева от него лежат половинки последовательности, разрезаемой им (запомним этот факт). Когда клетка поймет, что в ее ДНК многовато дырок, включится клеточная система репарации (восстановления) двойных разрывов. Разрыв «застраивается» нуклеотидами по шаблону, в качестве которого берется максимально похожий участок ДНК. А самым похожим участком окажется фрагмент ДНК с геном «наводящейся эндонуклеазы» — вспомним какими последовательностями он окружен. Так система репарации клетки сама же встраивает ген эндонуклеазы в новое место.

Микрогаметоцит паразита Plasmodium falciparum в мазке крови. Микрофотография: Dr. Mae Melvin / CDC / Public Domain

Микрогаметоцит паразита Plasmodium falciparum в мазке крови. Микрофотография: Dr. Mae Melvin / CDC / Public Domain

Ген, не обремененный никакими полезными для организма функциями, успешно копирует себя, поэтому такой эгоизм поддерживается отбором на уровне генов. Вместе с тем вред, который этот ген-паразит причиняет своему организму-носителю, столь незначителен, что никак не штрафуется естественным отбором на уровне особи. Короче, эгоистичное поведение генов «наводящихся экзонуклеаз» полностью следует всем заветам Ричарда Докинза, а их тяга к поиску нового адреса прописки и дала им название «наводящиеся».

Но самое главное для нас не сам факт безобразного эгоизма генов, а то, что механизм репарации, как правило, встраивает эти гены на гомологичную хромосому. Из школьного курса биологии мы, если постараемся, обязательно вспомним, что хромосомы у нас (как и всех диплоидных организмов) парные не просто так. Одна из них досталась нам от папы, а другая от мамы, и набор генов в них одинаковый, разве что сами эти гены могут быть представлены разными вариантами (аллелями). Нужна такая хитроумная конструкция не только для красоты, а в основном (хотя и не только) для удобства работы уже упомянутой системы ремонта ДНК: если из ДНК был потерян небольшой кусок — не беда, его всегда можно восстановить, взяв за образец вторую гомологичную хромосому из пары. И именно в эту вторую, гомологичную хромосому будет вписываться наш ген «наводящейся эндонуклеазы».

А теперь вспомним менделевские законы наследования. Когда от мамы и от папы мы получили разные формы (аллели) одного и того же гена, каждый из них будет наследоваться следующему поколению с вероятностью 50% (½). Но только если речь не идет о «наводящейся эндонуклеазе». Доставшись от одного из родителей, этот наглый ген тут же найдет себе место и на соседней, гомологичной хромосоме. А значит, все 100% потомков станут его обладателями. Такая же картина повторится в следующем поколении. Эгоистичный ген будет стремительно распространяться по популяции.

В 2003 году Остин Берт предложил использовать это свойство ушлого гена во благо человечества. А именно — для направленного уничтожения надоевших нам биологических видов. В теории этот сценарий подходит для любого организма, размножающегося половым путем. Представим, что методами генной инженерии мы изменяем специфичность нашей эгоистичной эндонуклеазы и заставляем ее наглый ген ненавязчиво влезать прямо в центр какого-нибудь безумно важного для размножения гена. Понятно, что это тут же его сломает. При этом важно, чтобы поломка этого гена вызывала стерильность только у одного пола — ведь должен же его кто-то распространять? Пусть, например, наша эгоистичная нуклеаза будет вызывать бесплодие у самок, тогда передавать ее другим поколениям будут самцы. С каждым поколением доля самцов-носителей и бесплодных самок будет увеличиваться, пока наконец в популяции не останутся лишь они одни. Это поколение и станет последним. Вроде бы все прекрасно! Но нет, оказалось, что жизнь далека от этого сценария.

Приучить эгоистичную нуклеазу распознавать именно нужные нам последовательности в генах комара оказалось не таким простым делом, поэтому технология могла так и остаться лишь смелым планом (pdf). Если бы не грянула очередная революция — открытие системы CRISPR-CAS9.

Не будем останавливаться на ней слишком подробно — благо, о ней и так написано немало. Но здорово осознавать, что эта система, созданная эволюцией сотни миллионов лет назад как аналог иммунитета у бактерий, — настоящее воплощение модного нынче принципа модульности. Нуклеаза CAS9 чем-то похожа на высокоточную ракету, ведомую своеобразным модулем наведения — специальной молекулой «гидовой» РНК. Если эта РНК села на цепь ДНК, этот участок ДНК обязательно будет разрезан нуклеазой. При этом последовательность самой «гидовой» РНК может быть практически любой, а значит, и навести нашу нуклеазу можно куда угодно.

Эти фантастические свойства системы и были использованы в новых концепциях генного драйва. Остальной сценарий нам уже знаком: половинки разрезаемого фрагмента окружают блок из тех генов, которые нужно «задрайвить» в популяцию. И здесь снова включается принцип модульности: мы можем «драйвить» практически любой ген, собирая блок из гена CAS9, гена «гидовой» РНК и практически любого гена (или генов!) целевой нагрузки, который мы хотим внести в нашу популяцию.

Самка комара Anopheles quadriannulatus. Фото: James Gathany / CDC / Public Domain

Самка комара Anopheles quadriannulatus. Фото: James Gathany / CDC / Public Domain

То есть для успеха коварного плана по искоренению малярии комаров даже не нужно стерилизовать! Можно, например, распространить в их популяции гены антител к малярийному плазмодию — и слюнные железы комаров навсегда перестанут быть уютным домом для этих паразитов. При этом, в идеале, для запуска волнообразного распространения генной модификации хватит единственного выпущенного на свободу ГМО-комарика. Для такой реакции ученые даже выдумали красивое название — мутагенная цепная реакция.

Но не слишком ли далеко мы зашли? Здравый смысл подсказывает, что в жизни все очень часто идет не по плану, а воображение быстро находит аналогию с ящиком Пандоры. Действительно, генный драйв, модифицирующий популяцию, легко распространяется и на весь биологический вид. Он необратим, а о его последствиях можно с уверенностью сказать, лишь поставив эксперимент в живой природе. Ученые оказываются буквально зажаты в порочном кругу из неприемлемых рисков. Мало того, получается, что побег из лаборатории даже одиночного генно-модифицированного животного с «драйвовыми» генами потенциально может привести к самым непредсказуемым последствиям. А уж какой тут простор для биотерроризма! Осознание этих простых истин пришло практически мгновенно, поэтому последние годы на западных исследователей, занимающихся изучением безопасности генного драйва, проливается настоящий дождь из государственных грантов.

И нужно сказать, что первые итоги их исследований успокаивают. Конец света опять отменяется. Математическое моделирование и лабораторные опыты показывают, что организмы способны довольно быстро вырабатывать устойчивость к генному драйву за счет мутаций в участках распознавания нуклеазы. В популяции достаточного размера всегда найдутся особи, обладающие устойчивым к драйву генотипом. Чем вреднее гены, которые мы насаждаем, тем быстрее будет распространяться устойчивость. И наоборот, если вредность гена не стоит затрат на приобретение устойчивости, устойчивость практически не проявляется. Другое, недавнее моделирование показывает, что ген может успешно «драйвить» в популяцию, только если его адаптивная цена не будет слишком большой. Да и количество ГМО-особей, необходимых для успешного запуска цепной мутагенной реакции, сильно зависит от «вредности» вносимого гена и измеряется уж никак не штуками.

Так что, судя по всему, предположения об опасности генного драйва изрядно преувеличены. Более того, оказывается само успешное внесение гена в популяцию требует борьбы с устойчивостью популяции к этому внесению. Так, например, последние исследования предлагают использовать для этого целый набор различных «гидовых» РНК, которые будут наводить нуклеазу CAS9 на несколько независимых целей в геноме. Чем больше разных РНК используется, тем больший охват популяции мы получим даже при внесении «вредных» генов.

Между тем группа сотрудников Массачусетского технологического института предложила оригинальный механизм ограничения генного драйва. Он получил название daisy-chain — «цветочная гирлянда». В ней предлагается разнести необходимые для драйва элементы на разные хромосомы. Например, так: два из этих трех изолированных элементов — целевой вносимый ген и ген гидовой РНК — остаются окруженными повторами и «драйвят» с помощью нуклеазы, а третий ген — ген этой самой нуклеазы CAS9, необходимой для драйва, сам к драйву не способен и передается по традиционным менделевским законам. В итоге генный драйв есть, но он строго ограничен числом носителей третьего гена, играющего по менделевским правилам. Теперь любой драйв зависит от него. Если драйв имеет какую-то адаптивную цену, он распространяется лишь ограниченное число поколений, а затем исчезает, потому что напрочь лишенный «эгоизма» третий ген очень быстро удаляется естественным отбором.

Теперь в ближайших планах авторов «гирлянды» — обкатка метода в дикой природе на микроскопических круглых червях нематодах. Между тем британская фирма Oxitec уже более двух лет ведет проект по снижению численности малярийных комаров в окрестностях города Эльдорадо в Бразилии. Правда, при этом применяется несколько урезанная версия генного драйва: фирма производит, а затем выпускает на свободу генно-модифицированных комаров-самцов. Спариваясь с дикими самками, подсадные комарики производят нежизнеспособное потомство, эффективно снижая численность собратьев по виду (по утверждению самой фирмы — более чем на 90%). Одновременно, из-за быстрой гибели потомства ГМО-особей, гены просто не получают возможности распространиться и цепной мутагенной реакции не происходит.

Ну и напоследок нельзя не вспомнить о Новой Зеландии. Пожалуй, эта страна знает больше всего о цене необдуманного вторжения в дела природы. Но тем не менее новозеландские экологи возлагают огромные надежды на генный драйв. На островах ведется скрупулезная подготовка к реализации одного из самых амбициозных экологических проектов в истории — Predator Free 2050. Само название как бы намекает на то, что до середины текущего столетия новозеландские экологи планируют полностью избавиться от хищников, обильно понаехавших на острова вместе с людьми за предыдущую тысячу лет. Возможно, именно здесь генный драйв впервые будет опробован на млекопитающих, в первую очередь — грызунах, которые уже не одну сотню лет кошмарят местных какапо, кудлатых киви и прочих гигантантских уэт.

Уэта Deinacrida rugosa. Фото: d_kluza / inaturalist.org / CC BY-NC-ND 4.0
Уэта Deinacrida rugosa. Фото: d_kluza / inaturalist.org / CC BY-NC-ND 4.0

Разумный скепсис, тревоги и сомнения всегда должны сопровождать любое вмешательство в природу. Но, по правде говоря, наш биологический вид на протяжении всей своей истории грубо менял эту природу под себя, не особо разбираясь в средствах. Так уж мы устроены. Но времена меняются, и, возможно, столь мощные биотехнологии, как генный драйв, наконец-то помогут нам перейти от грубой ломки биосферы к ее аккуратному обустройству и мягкой, разумной подстройке под свои потребности.

Добавить в закладки
Комментарии
Вам понравилась публикация?
Расскажите, что вы думаете, и мы подберем подходящие материалы

Чего от нас хотят микробы?

Они управляют нашим поведением и добиваются желаемого

Недавно в журнале Nature вышла очередная статья, возлагающая вину за целый ряд человеческих болезней, в том числе психических, на микробов — обитателей нашего кишечника. За полвека изучения кишечных бактерий ученые так и не смогли определиться, чего они приносят больше — пользы или вреда. Но успели убедиться в том, что среди прочего микробы могут вызвать изменения в поведении человека и его психическом здоровье. Мы переводим их сигналы с микробьего языка на человеческий и предлагаем читателю самому решить, друзья нам бактерии или враги (но не обещаем, что они не повлияют на его мнение).
Добавить в закладки
Комментарии

Про микробов и людей

Помните советский мультфильм про лося, на рогах которого ездили лесные звери и устроили себе там дом? Наш организм — такой же лось для триллионов одноклеточных организмов (большинство из них составляют бактерии), которых собирательно называют микробами, микрофлорой или микробиотой. Можно даже сказать, что мы и наши микробы составляем один метаорганизм, который необходимо рассматривать как единое целое, поскольку людей, лишенных микробов, не существует.

Люди и микробы объединились во имя самого ценного, что нужно живому организму, — во имя еды. Люди умеют ее добывать, а микробы — переваривать. Однако для мирного сосуществования им необходимо выполнять договор о ненападении. Поэтому, действуя на скопления иммунных клеток стенки кишечника, бактерии смягчают возможный иммунный ответ. Если этого не происходит, например, из-за недостатка бактерий, иммунитет человека становится более агрессивным. Вероятно, именно из-за этого у детей, выросших в условиях пониженного содержания бактерий (в чистоте, вне контакта с матерью и ее молоком), чаще развиваются аллергии и аутоиммунные заболевания. Со своей стороны, микробы не разрушают стенки кишечника. Впрочем, они остаются мирными соседями лишь до тех пор, пока не проникнут внутрь организма человека. Там они вызывают тяжелые воспаления, с которыми непросто бороться.

Кроме того, микробы требуют защиты своих интересов. Например, им важно, чтобы к ним регулярно поступала пища, а стенка кишечника их не травмировала. Для этого они выделяют сигнальные молекулы, регулирующие деятельность окружающих клеток хозяина, например всасывание или секрецию ферментов, или даже отложение жира (да-да, есть данные о том, что ожирение связано с нарушением баланса кишечной микробиоты). Ну и, наконец, такое сосуществование иногда приводит к странным эффектам. Например, микробы могут поглощать лекарства, принимаемые хозяином, или как-то их модифицировать, что иногда существенно снижает эффективность лечения. Или же выделять свою ДНК (в рамках обмена генами с другими бактериями), которая, возможно, поглощается окружающими тканями хозяина. Однозначных подтверждений тому, что гены бактерий работают в клетках стенки кишечника, пока нет. Однако известны подобные случаи у насекомых и червей. А в геноме человека найдены некоторые последовательности, подозрительно похожие на бактериальные. Вероятно, между нами и нашими микрообитателями чуть больше общего, чем кажется на первый взгляд. [ ... ]

Читать полностью

Чьи гены?

Научный взгляд на телегонию: чего ждать, если ваша бабушка «согрешила с водолазом»

Телегония — наследование ребенком признаков от предыдущих партнеров матери — относится к темам, которые не принято обсуждать вслух. Считается, что и так все понятно. Но при ближайшем рассмотрении оказывается, что каждому «понятно» что-то свое. Вооружившись проверенными источниками и здравым смыслом, мы попробуем свести разные представления о телегонии к общему (рациональному) знаменателю и выслушаем современную науку, которой внезапно тоже есть, что сказать нового по этому поводу.
Добавить в закладки
Комментарии

Для начала договоримся о терминах. Удивительно, но уже здесь нет единства: по результатам запроса в Яндексе мы видим, что разнообразные источники телегонию называют «наукой», «концепцией», «тайной человечества» и даже «инструментом совершенствования биологического вида». Мы остановимся на «классическом» варианте, который предполагает, что предыдущий половой партнер матери может как-то влиять на ее потомство от последующего. Поясним сразу, что нас интересуют не этические аспекты этого вопроса, а только физиологические и молекулярные механизмы.

Взлет и падение

Датой рождения телегонии как понятия можно считать 1868 год, когда Чарльз Дарвин (да-да, и этот фундамент тоже заложил он) в своей книге «Изменение животных и растений в домашнем состоянии» привел разнообразные свидетельства этого явления. Большинство из них представляли собой рассказы «очевидцев», полученные Дарвином через третьи руки, и поэтому научным аргументом являться не могли. Единственным задокументированным случаем, вошедшим с тех пор во все популярные тексты, остается история кобылы лорда Мортона. Если коротко, кобыла арабских и английских кровей была случена с кваггой (ныне истребленный подвид зебры) и принесла потомство с характерными полосками. В следующий раз, уже от самца своей породы, она снова принесла жеребят, внешне напоминавших кваггу. Ситуация повторилась и через восемь лет: в отсутствие жеребца-квагги опять родились полосатые дети.

Жеребенок — гибрид зебры и лошади. Фото из книги Джеймса Юарта The Penycuik experiments
Жеребенок — гибрид зебры и лошади. Фото из книги Джеймса Юарта The Penycuik experiments

[ ... ]
Читать полностью

Живой вирус против гриппа

В чем отличие живой гриппозной вакцины от инактивированной и что такое коллективный иммунитет

Погода еще радует нас солнечными и теплыми днями, но зима близко. А с ней и ОРВИ, к которым относится и грипп. «Чердак» поговорил с заведующей отделом вирусологии Института экспериментальной медицины, экспертом ВОЗ, профессором Ларисой Руденко и разбирался, что такое живая гриппозная вакцина, какие штаммы этого вируса сейчас считаются самыми опасными, что такое коллективный иммунитет и как защитить себя от гриппа.
Добавить в закладки
Комментарии

Предупрежден — вооружен

Каждую осень врачи предупреждают о новых вспышках гриппа, при этом нередко говорят о появлении новых штаммов вируса. Вирус гриппа славится скоростью, с которой он меняется: новые штаммы появляются довольно быстро из-за того, что генетическую информацию вируса гриппа кодирует РНК, которая легко мутирует, а многие из этих мутаций идут вирусу на пользу, например делая его менее узнаваемым для клеток нашего организма.

Чтобы бороться с постоянно меняющимся врагом, приходится работать на опережение: Всемирная организация здравоохранения через Глобальную систему эпиднадзора за гриппом и ответных мер (ГСЭГОМ) ведет мониторинг за вспышками гриппа в различных регионах планеты. И каждый год, примерно за шесть месяцев до начала сезона заболевания гриппом, ВОЗ дает рекомендации по составу вакцин против него для Северного и Южного полушарий.

«Прогноз Всемирной организации здравоохранения имеет очень большое значение. Но мы даже не ждем рекомендаций. Когда появляются новые штаммы, мы начинаем заранее готовить вакцину. Иногда получается, что приходят рекомендации, а у нас штамм уже готов. Сейчас в Южном полушарии начинается циркуляция вируса гриппа, активная эпидемическая ситуация в Австралии, Новой Зеландии, Гонконге. Мы уже в контакте с лабораториями этих стран, чтобы контролировать, что там циркулирует и на что нам ориентироваться», — рассказывает Руденко о подготовке живой вакцины против новых штаммов гриппа. [ ... ]

Читать полностью