Текст уведомления здесь

Далеко ли до гомункула?

Прогресс и препятствия на пути к созданию искусственной клетки

Научно-фантастическое будущее все ближе. Искусственные органы заменяют настоящие, а искусственный интеллект обыгрывает чемпионов. 18 лет назад на Седьмой конференции по искусственной жизни ученые сформулировали 14 этапов, которые им предстоит преодолеть на пути к созданию собственно искусственной жизни. Первый из них — создание примитивного протоорганизма in vitro. «Чердак» рассказывает, как обстоят дела на этом фронте и стоит ли нашим клеткам опасаться искусственно созданных конкурентов.
Добавить в закладки
Комментарии

Клетка живая искусственная

Когда биологи открывали клетку в XVII веке, они не задумывались о том, что это такое и как ее отличить от неживой материи. Тогда было важно постулировать, что клетка может образовываться только от клетки, в противовес разным спекуляциям о самопроизвольном возникновении жизни из грязи. И клеткой называли мельчайшую видимую составляющую любого организма. Сейчас же ситуация строго обратная: ни у кого не вызывает вопросов, из чего состоят живые существа. Вместо этого мы пытаемся применить прием, запрещенный еще три с лишним столетия назад, и собрать клетку из грязи, а точнее из подручных веществ.

Так что же такое клетка? Привычные нам критерии быстро оказываются бесполезными. Начнем с того, что не любая мельчайшая составляющая даже человеческого организма является клеткой. Например, то, из чего состоит поверхностный слой кожи, уже не клетки, а постклеточные структуры, в них нет ядра, и они не живые. Та же история с безъядерными эритроцитами и тромбоцитами, которые иногда продолжают по инерции называть клетками крови. Наличие ядра, впрочем, тоже не является критерием клетки — его опровергают бактерии. Можно тогда предположить, что клетка — это как минимум мембранный пузырек с каким-либо наследственным материалом внутри. Но в таком случае в категорию клеток попадут и экзосомы — мембранные пузырьки с белками и нуклеиновыми кислотами, с помощью которых клетки общаются друг с другом. Наконец, даже если мы как-то сможем определить клетку животного, с нами не согласятся ботаники, потому что у растений все совсем не так. Большая часть клеток растения соединена друг с другом цитоплазматическими мостиками, при этом в некоторых из них может не быть ядра — оно вынесено в соседние клетки. Грубо говоря, иногда все растение целиком представляет собой одну-единственную клетку в нашем классическом понимании.

Поэтому искусственные клетки мы скорее изобретаем: сегодня ученые пытаются создать систему, обладающую определенными свойствами.

Что все это значит? Давайте по пунктам.

Наличие границ (компартментализация). Во-первых, клетка должна быть изолирована от окружающей среды. Во-вторых, она должна быть разделена на внутренние зоны, компартменты. Какую бы самую простую клетку мы ни взяли, даже мельчайшую бактерию, у которой нет никаких органелл и внутренних перегородок, все равно ее цитоплазма будет неоднородной. Это необходимо для того, чтобы участники химических реакций скапливались в одном месте и не расплывались по клетке — в противном случае обмен веществ не будет эффективным.

Самодостаточный обмен веществ. Искусственная клетка должна уметь самостоятельно получать энергию и использовать ее для своих внутренних нужд. Питательные вещества могут поступать извне, но весь процесс их захвата, получения энергетического эквивалента и его расхода должен происходить автономно.

Система передачи информации. В клетке должна быть заложена самовоспроизводящаяся информация о ее строении (обычно мы подразумеваем под этим молекулу ДНК или РНК, но кто знает, какие еще возможны варианты). Наличие этого минимального набора свойств позволяет нам считать искусственную клетку живой. Но для ее дальнейшего существования необходимо добавить еще два.

Рост и размножение нужны, соответственно, чтобы численность популяции не сокращалась), а адаптивность — чтобы выжить в изменяющихся условиях окружающей среды.

Разбираем самосвал

Когда ребенок ломает игрушку, пытаясь понять, что у нее внутри, или отрывает лапки комару, он не просто хулиганит — он определяет минимальные необходимые свойства системы. Некоторые ученые, разбираясь с тем, что же это значит — «живая клетка», используют тот же самый подход, его еще называют top-down — от сложного к простому. Сейчас ученые, его придерживающиеся, работают в основном над упрощением генома — пытаются получить минимальный геном, кодирующий только жизненно необходимые клетке белки.

Так, в 2014 году удалось очистить одну из хромосом дрожжей от ненужных последовательностей. Сначала последовательность хромосомы секвенировали, а потом синтезировали ДНК с нуля. При этом за бортом остались транспозоны (мобильные элементы, остатки вирусов), субтеломерные (концевые) области хромосомы, интроны (некодирующие области генов), повторы ДНК и т.д. «Очищенная» хромосома получилась на 14% короче оригинала, но при этом полноценно работала в дрожжевых клетках.

Аналогичная судьба постигла бактерию Mycoplasma mycoides. Бактерии этого рода известны своими небольшими геномами — многие из них стали паразитами и потеряли часть ненужных генов. В 2010 году ученые полностью воспроизвели их геном и заменили хромосомы бактерий на искусственные. Газеты тогда писали о том, что «создана первая искусственная клетка», объясняя это тем, что впервые клетка управляется молекулой ДНК, полностью синтезированной вручную. Однако это только начало истории. К 2016 году геном микоплазмы удалось еще сильнее «усовершенствовать», сократив почти в два раза (с 1079 тысяч пар нуклеотидов до 531). В новой версии минимальной ДНК осталось всего 473 гена. Правда, функции 149 из них до сих пор неизвестны, и это следующая проблема на пути подхода top-down.

Собираем самосвал

Пока одни ученые разбирают одноклеточных организмов, другие пытаются собирать клетки с нуля. Это другая крайность — подход bottom-up. В некотором роде это попытка воспроизвести в лабораторных условиях ранние этапы возникновения жизни, когда она представляла собой лишь скопления самовоспроизводящихся молекул. При этом каждый такой эксперимент по выращиванию жизни с нуля ставит своей целью воспроизвести какое-нибудь одно свойство живой клетки (здесь можно послушать про то, как этим занимаются в университете ИТМО).

С пунктом 1 — созданием границ — проблем обычно не возникает. Мы давно умеем собирать мембранные пузырьки (липосомы), и в некоторых случаях удалось даже воссоздать мембрану клетки. Более сложная задача — создать систему пузырьков-компартментов, в каждом из которых происходили бы разные химические реакции. В 2014 году удалось собрать такую систему из пластика: один пузырек поглощал вещество извне и превращал в другое, затем сквозь полупроницаемую мембрану продукты переходили дальше, и так по цепочке, пока не получалось светящееся соединение, сигнализирующее об успехе операции. Даже когда в один компартмент подселили фермент, разрушающий ферменты других компартментов, система все равно работала. А это значит, что отсеки обменивались только продуктами реакций, но не ферментами, и конструкция получилась похожей на то, что происходит в реальной клетке.

Также мы умеем делать эти компартменты совместимыми с живыми системами. В марте этого года на свет появилась первая искусственная органелла — мембранный пузырек с порами, проницаемость которых регулируется концентрацией веществ в клетке. Внутри пузырька заперта пероксидаза хрена, которая окисляет поступающие внутрь вещества. Вся эта конструкция оказалась жизнеспособной и функциональной, будучи подсажена внутрь зародыша рыбы.

Следующий шаг — воспроизвести пункт 2, систему захвата и извлечения энергии из окружающей среды. Это оказывается сложнее, так как нужен не только фермент, производящий реакции, но и система восстановления этого фермента. Такую конструкцию ученые собрали только этим летом, однако систему восстановления все равно пришлось позаимствовать у кишечной палочки — самостоятельно мы пока их строить не умеем.

Третий пункт — информационную систему — удалось собрать буквально месяц назад. Правда, о целых хромосомах речь пока не идет. На данном этапе это просто молекула ДНК, кодирующая фермент, который копирует ДНК. Система пока работает только в пробирке, зато автономно.

Четвертый пункт — размножение и рост — пока удается воссоздать только в случае мембранных пузырьков. Новые липиды (составляющие мембран) встраиваются в готовый пузырек, а когда он вырастает слишком большим, поверхностное натяжение ослабевает и он распадается на два маленьких. Однако целенаправленное размножение с честным делением (как в любой клетке) пока никому воспроизвести не удалось.

Таким образом, в лабораториях искусственной жизни на данный момент существуют только конструкции, обладающие отдельными свойствами живых клеток. Следующий шаг — научиться соединять их в комбинации свойств (например, деление на компартменты плюс автономный обмен веществ). И только в последнюю очередь можно будет говорить об адаптивности полученной системы и ее способности эволюционировать: чтобы адаптироваться к условиям среды, система должна быть как минимум автономной. Можно надеяться, что к этому моменту мы как раз начнем больше понимать про минимальный геном, необходимый для работы клетки, и тогда подходы top-down и bottom-up наконец-то встретятся.

Запускаем самосвал

Пока одни исследователи пытаются подкопаться с противоположных сторон к тайне создания жизни, другие пытаются найти применение тем методам, которые нам уже доступны. Того немногого, что мы уже умеем, достаточно, чтобы создать простейшие полуживые конструкции и облегчить себе жизнь. В этом году вышло несколько работ, посвященных созданию надклеточных структур — конструкций, одним из рабочих модулей которых являются живые клетки. Например, можно приручить клетки кишечной палочки, заперев их внутри искусственной клетки, и заставить их светиться в ответ на появление определенных веществ в среде. Такая система теоретически безопасна для организма человека и могла бы упростить диагностику.

Второй вариант практического применения — недоклетки, аналоги человеческих клеток. Они могли бы заменить те клетки, которым не обязательно размножаться или автономно существовать. Например, в прошлом году получилось собрать модель бета-клетки поджелудочной железы. Эта псевдоклетка представляет собой вакуоль, заполненную микровакуолями с инсулином. При повышении уровня глюкозы в крови растет показатель кислотности рН, при этом изменяется конформация белков, сдерживающих микровакуоли, и псевдоклетка их выплевывает наружу. А другая группа ученых недавно создала аналог Т-лимфоцита. Это мембранный пузырек с биогелем и магнитными зернами, который плюется стимуляторами деления и противовирусного ответа в ответ на изменение магнитного поля.

***

18 лет назад ученые определили для себя траекторию движения к созданию искусственной жизни. Первым в списке дел стояло моделирование протоорганизма, а дальше шли более глобальные задачи — моделирование мышления в искусственной системе, количественная модель эволюции и разработка этических принципов в отношении искусственной жизни. Но, вероятно, нумеровать этот список нужно было в обратном порядке, так как первые этапы оказываются гораздо сложнее последних. За эти годы мы научились переписывать генетический код и моделировать эволюцию, но так и не сумели заставить простейший мембранный пузырек жить своей жизнью. Даже создание искусственного интеллекта движется быстрее, чем воссоздание клетки. Этот маленький и примитивный на первый взгляд «самосвал» пока что остается большой загадкой, до которой нам еще расти и расти.

Добавить в закладки
Комментарии
Вам понравилась публикация?
Расскажите, что вы думаете, и мы подберем подходящие материалы
Фрагмент Королевских ворот в Хаттусу, столицу Хеттской империиStylone / Фотодом / Shutterstock

Бронзовый коллапс, или Куда делись все эти люди

Чем был вызван кризис средиземноморских цивилизаций три тысячи лет назад

В конце второго тысячелетия до нашей эры в Греции и на Ближнем Востоке — в Месопотамии, в Древнем Египте, в Сирии, в Малой Азии — творились очень странные дела. Великие царства бронзового века одно за другим уходили в небытие, из ниоткуда появлялись новые народы, хроники повествовали о нашествиях, голоде и прочих бедствиях. Историки долго предпочитали винить во всем «народы моря», но теперь, благодаря археологическим данным, полученным в последние годы, у нас, кажется, есть основания иначе отвечать на вопрос, кто виноват в коллапсе «бронзовых» цивилизаций.
Добавить в закладки
Комментарии

Как рассказывает профессор Эрик Клайн из Университета Джорджа Вашингтона, директор Капитолийского археологического института, автор книги «1177 BC: The Year Civilization Collapsed», Средиземноморье позднего бронзового века представляло собой мир, очень похожий на современный, — глобализованное пространство с торговыми нитями, опутавшими всю ойкумену, то есть все страны, составлявшие на тот момент европейскую цивилизацию.

Торговые и культурные связи второго тысячелетия до нашей эры обеспечивали единый высокий технологический уровень городов Греции и Ближнего Востока во всем: в кораблестроении, в архитектуре, в обработке металлов. Чтобы показать протяженность и устойчивость торговых путей бронзового века, достаточно сказать, что олово для выплавки бронзовых изделий поступало, скорее всего, из Афганистана, а медь брали на Кипре.  Города были оснащены системами водоснабжения, инженерный уровень которых античным грекам тысячу лет спустя и не снился.

Все это откатилось назад со страшной скоростью в кратчайшие по меркам истории сроки, чтобы сбросить с древнего мира бронзовый век и позволить ему войти в новый век — железный, в ту историю, которую мы изучаем в школе.

За относительно короткое время — в древнеегипетских надписях зафиксирован промежуток от 1207 до 1177 года до нашей эры — весь прекрасный бронзовый мир растворяется. Торговые связи рушатся. Из известных нам царств бронзового века в более-менее нетронутом виде остается Египет, который теряет контроль над Сирией и Палестиной. Вавилон и Ассирия сохраняют разве что локальное значение. Исчезает микенская цивилизация. Разрушена Троя. [ ... ]

Читать полностью

«Умереть молодым, но — чем позже, тем лучше»

К чему стремятся в школе геронтологии МФТИ

В МФТИ прошла международная школа «Механизмы старения и развития возрастных заболеваний». Большинство ее участников — биофизики, приехавшие на конференцию «Биомембраны», которая проходила одновременно со школой. Корреспондент «Чердака» разобралась, как связаны биофизика со старением и какие новые подходы к этой теме есть в современной науке.
Добавить в закладки
Комментарии

Физический десант

Геронтологических лабораторий в России становится все больше. Среди последних поступлений — лаборатория системной биологии старения в МГУ и Центр исследований молекулярных механизмов старения и возрастных заболеваний в МФТИ. Однако и этого недостаточно — поле для деятельности слишком широко, так как практически все физиологические параметры организма изменяются с возрастом. Поэтому в поисках причин старения к биологам присоединяются физики.

Геронтологическая школа была придумана как сателлит биофизической конференции, посвященной биомембранам. «Это независимые события, но они связаны, как и все в нашей жизни», — рассказывал на открытии директор Центра Валентин Горделий. Связаны они так: одна из распространенных теорий старения — митохондриальная — подразумевает, что большинство дегенеративных процессов запускаются в разрушающихся митохондриях, органеллах, производящих энергию. Производство энергии напрямую зависит от митохондриальных мембран — их прочности, электрического потенциала и способности пропускать заряженные частицы.

Фактическая задача школы — дать биофизикам, до сих пор занимавшимся только физическими свойствами мембран, представление о том, как устроена современная наука о старении во всем ее биологическом многообразии. «Старение — сложный феномен, — признался Горделий. — Есть много теорий и гипотез о его механизмах. И это естественно. Мы решили, что было бы хорошо собрать хотя бы несколько спикеров мирового уровня, которые смогли бы осветить все эти идеи и подходы». [ ... ]

Читать полностью

Ау, аутизм

Как в поисках причины аутизма ученые погружаются в омут больших данных и учатся растить мозги в пробирке

Еще недавно психические заболевания изучали в больницах, исследуя физиологию и поведение больных. Но когда такие исследования не дают ответов на ключевые вопросы, в дело вступают новые, часто далекие от реальных пациентов технологии. «Чердак» рассказывает, что удалось узнать о природе аутизма с помощью эпигенетических меток, больших данных и мозгов, выращенных в пробирке.
Добавить в закладки
Комментарии

Аутизм относится к той группе заболеваний, про которые мы чем больше узнаем, тем меньше понимаем  — психических. В отличие от неврологических болезней, например, болезни Альцгеймера или хореи Гентингтона, которые тоже приводят к отклонениям в поведении, психические заболевания зачастую не видны на уровне клеток и тканей.

Если какой-нибудь паркинсонизм с легкостью распознает гистолог, только взглянув на препарат мозга — на нем будут явно заметны органические повреждения нервной ткани, ведущие к гибели клеток — то мозг аутиста или шизофреника он «по фотографии»  диагностировать не сможет. И хотя это не значит, что лечить болезнь Альцгеймера мы умеем лучше, чем шизофрению, мы, как минимум, уже можем искать причину поражения ткани и способ с ней бороться.

В случае психических болезней повреждения мозга не органические, а функциональные. Их не видно в микроскоп.

О каждом таком заболевании мы обладаем множеством разрозненных фактов, которые с трудом складываются в общую картину и не помогают найти корень проблемы. Например, мы знаем, что у аутичных детей повышен уровень воспалительных маркеров в крови. Или что у них беднее состав кишечной микробиоты, чем у их здоровых сверстников. Но протянуть нить взаимосвязей между особенностями поведения, областями мозга, клетками и белками пока не удается. [ ... ]

Читать полностью