Текст уведомления здесь

Клеточные трагедии

Часть III: шок!

Внутренняя жизнь клетки насыщена событиями не меньше, чем человеческая. Она полна страстей, опасностей и, как и всякая жизнь, рано или поздно заканчивается. Полина Лосева разбирается в том, какие сюжеты встречаются в судьбах клеток и как их развитие сказывается на нас с вами. Этой темой станет клеточный шок, который лишь отдаленно напоминает шок человеческий, но приносит гораздо больше вреда.
Добавить в закладки
Комментарии

«Клеточные трагедии» — это большой цикл статей о клетках, который продолжает пополняться. Почитайте и другие тексты о нелёгкой жизни клеток: в них рассказывается о самоубийствах, стрессе, муках самоопределения, старости, второй молодости и бессмертии.

© Ольга Степанюк

© Ольга Степанюк

Что объединяет паркинсонизм, прионные болезни, врожденную ломкость костей и старение? Молекулярная изнанка. В основе всех этих состояний лежит знакомая большинству девушек проблема — неправильная укладка. Только в данном случае речь идет о внутриклеточных белках.

Роковые кудри

Заветная мечта каждой леди состоит в том, чтобы волосы лежали сами по себе и ей не приходилось тратить бесценные утренние часы на укрощение строптивых. В этом смысле клеткам повезло больше: в последовательности любого белка запрограммировано самостоятельное свертывание в окончательную структуру. Обычно это происходит при синтезе белка на рибосоме: белковая нить постепенно выдавливается наружу, как паста из тюбика, и сразу же начинается скручиваться. Это происходит за счет электромагнитного взаимодействия: положительно и отрицательно заряженные участки нити притягиваются, а также незаряженные (гидрофобные) области слипаются друг с другом. В результате такого скручивания белок приобретает определенную конформацию — структуру, необходимую для выполнения его функций.

Но представим себе, что что-то идет не так. Юная неопытная леди в попытках добиться идеальной завивки слишком долго держит волосы на плойке. Они перегреваются, и вместо долгожданных кудряшек получается солома, которая никакую форму уже не держит. Аналогичная ситуация в клетках носит название теплового шока. При нагревании белки теряют свою конформацию, так как молекулы воды в растворе начинают двигаться быстрее и разрушают связи между участками белковой нити. Если никак не восстановить структуру белков, то последствия для клетки окажутся плачевными. Сам по себе шок не является непосредственной причиной клеточной гибели — он оказывает на клетку парализующее действие. Подобно человеку, впавшему в ступор и утратившему контроль за происходящим, клетка перестает регулировать работу своих процессов жизнедеятельности. И как только тепловой шок коснется белков, участвующих в производстве энергии, клетка начнет погибать. В отсутствие энергии она не сможет регулировать транспорт через мембрану, вода начнет неконтролируемо поступать внутрь, а клеточное содержимое — выходить наружу.

После открытия теплового шока оказалось, что и другие стрессовые факторы, не только температура, могут привести к похожей ситуации. Среди них — окислительный стресс (накопление в клетке активных молекул со свободными радикалами), инфекция, отравление токсинами и тяжелыми металлами. Все они приводят к нарушению нормальной конформации белков. Поэтому сейчас чаще говорят о протеотоксическом шоке — состоянии, когда клеточные белки по той или иной причине свернуты неправильно. Протеотоксический шок может развиваться двумя путями. Первый мы уже описали выше: он связан с раскручиванием белков и влечет за собой гибель клетки. Второй — в некотором смысле более опасный — приводит к накоплению в клетке (и иногда, как следствие, между клетками) неправильно свернутых белков.

Представим себе, что при укладке волос наша леди неудачно потянула плойку, и накрученные пряди сцепились друг с другом. Вместо аккуратных отдельных кудрей возник бесформенный колтун. Если его не распутать, то он будет расти, цепляясь за новые и новые пряди. Ситуация может развиваться еще более плачевно, если волосы были предварительно намазаны какой-нибудь клейкой косметикой. У многих белков есть такая клейкая область — гидрофобные участки. Из-за отсутствия заряда к ним не притягивается вода, поэтому они активно слипаются друг с другом, вне зависимости от того, на одном белке находятся или на разных. Поэтому, если белки сворачиваются неправильно или разворачиваются, они могут склеиваться друг с другом. Кроме того, неверно скрученные белковые нити могут запутываться подобно волосам. В результате образуются белковые агрегаты.

Накопление белков в нервной ткани. Слева — синдром Крейцфельда-Якоба, бледные скопления в центре вызваны прионными белками. Справа — болезнь Паркинсона, темным окрашены скопления белков. Авторы: Jensflorian и CDC/Teresa Hammett Photo Credit: Sherif Zaki; MD; PhD; Wun-Ju Shieh; MD; PhD; MPH Wikimedia commons CC BY-SA 3.0 Public Health Image Library (PHIL) CC0
Накопление белков в нервной ткани. Слева — синдром Крейцфельда-Якоба, бледные скопления в центре вызваны прионными белками. Справа — болезнь Паркинсона, темным окрашены скопления белков. Авторы: Jensflorian и CDC/Teresa Hammett Photo Credit: Sherif Zaki; MD; PhD; Wun-Ju Shieh; MD; PhD; MPH Wikimedia commons CC BY-SA 3.0 Public Health Image Library (PHIL) CC0

Клетка, накапливающая белковые агрегаты, может умереть не сразу. Какое-то время они будут просто в ней копиться и усложнять ей жизнь. Серьезная угроза возникает, когда такой агрегат прилипает к мембране, потому что от этого она рвется. Клетка умирает, а белки выходят в межклеточное пространство и продолжают копиться там. Тогда начинаются проблемы уже на уровне ткани (нарушается доступ питательных веществ к клеткам), а потом и организма (клетки начинают массово гибнуть). Известно множество заболеваний, развивающихся по такому механизму. Среди них — следующие.

Несовершенный остеогенез, он же «болезнь хрустального человека». Связан с врожденным дефектом коллагена — белка, составляющего среди прочего основу внеклеточного вещества костей. Вместо того чтобы образовывать прочный каркас, коллаген накапливается в виде агрегатов, и прочность костей снижается.

Болезни Паркинсона и Альцгеймера. Несмотря на то что точные причины развития этих заболеваний до сих пор неизвестны, мы уже знаем, что они сопровождаются накоплением белковых агрегатов в нервной системе. Это вызывает гибель нейронов и, следовательно, нарушение двигательных и когнитивных функций.

Болезнь Гентингтона. Здесь механизм известен наверняка, известна и причина. В гене белка гентингтина есть повторы из трех нуклеотидов, которые при определенной мутации получают способность самокопироваться, таким образом удлиняя и ген, и белок. Начиная с некоторой длины нити, гентингтин перестает нормально сворачиваться и образует агрегаты, опять-таки необратимо повреждая нервную систему и другие органы и ткани.

Прионные болезни. Это группа заболеваний, вызванных попаданием в организм белков неправильной конформации. Встречаясь со здоровыми белками, прионы заставляют и их изменить конформацию, результатом чего является опять же накопление их в тканях.

Белки-хранители

Что делать, если каждая клетка наполнена роковыми кудряшками, которые в любой момент могут выйти из-под контроля? Завести другие, спасительные, белки. Оказывается, что если нагревать клетки любого эукариотического (содержащего ядра) организма, от дрожжей до человека, то в них повышается количество белков определенной группы. Их назвали белками теплового шока. И потом, естественно, оказалось, что они реагируют на любой протеотоксический шок, не обязательно вызванный температурой. Это целая группа с разнообразными функциями, но в целом они используют три стратегии борьбы с накоплением белков.

Во-первых, любая леди знает, что лучшее средство против колтунов — это расческа. Этот инструмент отделяет волосы друг от друга, предоставляя каждой пряди свою колею между зубьев. Аналогичным образом работают белки теплового шока из группы шаперонов. Это название отражает английское значение слова chaperone" — «наставник», «компаньон». Они представляют собой бочонки с гидрофобной полостью, внутрь которой может поместиться белок. Таким образом они ограничивают его от взаимодействия с другими белками (как компаньоны предотвращали излишние контакты своих подопечных, особенно юных леди, с окружающими) и предоставляют ему возможность скрутиться независимо от них.

Молекулярная модель комплекса шаперонов. В центре видна гидрофобная полость. Автор изображения: P99am Wikimedia Commons CC BY-SA 3.0
Молекулярная модель комплекса шаперонов. В центре видна гидрофобная полость. Автор изображения: P99am Wikimedia Commons CC BY-SA 3.0

Во-вторых, для случаев, с которыми не справляется расческа, есть ножницы. Можно попробовать отстричь отдельную прядь, чтобы распутались остальные. В клетке для уничтожения белков неправильной конформации служат протеасомы. Это крупные молекулярные комплексы, расщепляющие белки. Некоторые шапероны могут служить меткой того, что белок свернут неверно. Если белок связан с шапероном, то протеасома с большей вероятностью его уничтожит.

В-третьих, наконец, если не помогают маленькие ножницы, то можно взяться за машинку и сбрить все целиком. На уровне клетки это означает запуск аутофагии, то есть самопоедания (именно за детальное описание этого механизма, кстати, в прошлом году вручили Нобелевскую премию по физиологии и медицине). Белки теплового шока могут способствовать перевариванию отдельных частей клетки (например, белковых агрегатов) лизосомами — пузырьками с пищеварительными ферментами.

На самом деле этим функции белков теплового шока не ограничиваются. Время от времени ученые обнаруживают их связь с самыми разными процессами. Оказывается, они блокируют апоптоз, не давая клетке совершить самоубийство. Вдруг поломку еще удастся починить? Они участвуют в размножении, а мыши, лишенные их, бесплодны. Какую-то роль они играют и в росте зародышей. Поэтому здесь еще долго до окончательного прояснения ситуации. Загадочной остается и регуляция их работы в многоклеточных организмах. В то время как в клеточных культурах при действии стрессовых факторов их работа запускается автоматически, в организме, по-видимому, работает какой-то другой механизм. Например, у круглого червя С. Elegans есть специальные нейроны, посылающие сигнал о тепловом шоке. Но у человека все не так очевидно. По крайней мере, при болезнях Альцгеймера и Паркинсона белки теплового шока не начинают работать интенсивнее, несмотря на накопление белковых агрегатов. Ученым еще предстоит обнаружить сигнал, который мог бы стимулировать их работу.

Вакцина из расчески

Несмотря на все загадки, окружающие белки теплового шока, уже возникают предложения использовать их в медицине. Например, известно, что при старении организма количество шаперонов падает. Можно предположить, что, повышая их количество, можно замедлить изнашивание организма и сопутствующие ему болезни. Поэтому ученые предлагают принимать активаторы белков теплового шока, например целастрол, в качестве профилактики старения (хотя такая терапия пока еще нигде не проводится). Кроме того, уже удалось, повышая количество шаперонов, улучшить состояние крыс с болезнью Альцгеймера.

Также интересно посмотреть, что происходит с белками теплового шока в раковых клетках. В них, наоборот, их количество растет. Это связано с появлением мутантных белков и высоким уровнем окислительного стресса. Поэтому раковым клеткам нужны шапероны, чтобы правильно сворачивать белки и предотвращать апоптоз. В лабораторных условиях получилось даже убить раковые клетки человека, заблокировав там работу белков теплового шока.

Однако наибольший интерес сейчас вызывает другой вариант применения этих белков. Одна из проблем, возникающих при раке, заключается в том, что иммунная система «не видит» опухолевые клетки, то есть не реагирует на них, как на чужеродные. Чтобы «натравить» лимфоциты на клетки опухоли, нужно их познакомить с каким-нибудь мутантным опухолевым белком. И здесь очень кстати вспомнить о том, что мутантные белки в раковых клетках связаны с шаперонами. При этом оказывается, что связаны они довольно прочно. Поэтому можно взять биопсию опухоли, выделить оттуда шапероны, а вместе с ними получить и мутантные белки. Затем забрать у пациента некоторое количество лимфоцитов, вырастить их и добавить к культуре смесь белков с шаперонами. После этого, вернувшись в организм пациента, лимфоциты будут гораздо лучше представлять себе врага, с которым предстоит бороться. Официально эта процедура еще не одобрена, но количество клинических исследований такой вакцины измеряется десятками. Так что все, вероятно, еще впереди.

Добавить в закладки
Комментарии
Вам понравилась публикация?
Расскажите, что вы думаете, и мы подберем подходящие материалы
Фрагмент Королевских ворот в Хаттусу, столицу Хеттской империиStylone / Фотодом / Shutterstock

Бронзовый коллапс, или Куда делись все эти люди

Чем был вызван кризис средиземноморских цивилизаций три тысячи лет назад

В конце второго тысячелетия до нашей эры в Греции и на Ближнем Востоке — в Месопотамии, в Древнем Египте, в Сирии, в Малой Азии — творились очень странные дела. Великие царства бронзового века одно за другим уходили в небытие, из ниоткуда появлялись новые народы, хроники повествовали о нашествиях, голоде и прочих бедствиях. Историки долго предпочитали винить во всем «народы моря», но теперь, благодаря археологическим данным, полученным в последние годы, у нас, кажется, есть основания иначе отвечать на вопрос, кто виноват в коллапсе «бронзовых» цивилизаций.
Добавить в закладки
Комментарии

Как рассказывает профессор Эрик Клайн из Университета Джорджа Вашингтона, директор Капитолийского археологического института, автор книги «1177 BC: The Year Civilization Collapsed», Средиземноморье позднего бронзового века представляло собой мир, очень похожий на современный, — глобализованное пространство с торговыми нитями, опутавшими всю ойкумену, то есть все страны, составлявшие на тот момент европейскую цивилизацию.

Торговые и культурные связи второго тысячелетия до нашей эры обеспечивали единый высокий технологический уровень городов Греции и Ближнего Востока во всем: в кораблестроении, в архитектуре, в обработке металлов. Чтобы показать протяженность и устойчивость торговых путей бронзового века, достаточно сказать, что олово для выплавки бронзовых изделий поступало, скорее всего, из Афганистана, а медь брали на Кипре.  Города были оснащены системами водоснабжения, инженерный уровень которых античным грекам тысячу лет спустя и не снился.

Все это откатилось назад со страшной скоростью в кратчайшие по меркам истории сроки, чтобы сбросить с древнего мира бронзовый век и позволить ему войти в новый век — железный, в ту историю, которую мы изучаем в школе.

За относительно короткое время — в древнеегипетских надписях зафиксирован промежуток от 1207 до 1177 года до нашей эры — весь прекрасный бронзовый мир растворяется. Торговые связи рушатся. Из известных нам царств бронзового века в более-менее нетронутом виде остается Египет, который теряет контроль над Сирией и Палестиной. Вавилон и Ассирия сохраняют разве что локальное значение. Исчезает микенская цивилизация. Разрушена Троя. [ ... ]

Читать полностью

Клеточные трагедии

Часть II: жизнь в условиях стресса

Внутренняя жизнь клетки насыщена событиями не меньше, чем человеческая. Она полна страстей, опасностей и, как и всякая жизнь, рано или поздно заканчивается. Полина Лосева разбирается в том, какие сюжеты встречаются в судьбах клеток и как их развитие сказывается на нас с вами. На этот раз речь пойдет о стрессе и о том, как клетки с ним справляются (а нам есть чему у них поучиться).
Добавить в закладки
Комментарии
Иллюстрация: Ольга Степанюк

Иллюстрация: Ольга Степанюк

«Клеточные трагедии» — это большой цикл статей о клетках. Почитайте и другие тексты об их нелёгкой жизни: в них рассказывается самоубийствах, шоке, муках самоопределения, старости, второй молодости, и — бессмертии.

Стресс — неотъемлемая черта нашей повседневной жизни. Если прислушаться к разговорам окружающих, то он обнаруживается повсюду: друзья жалуются друг другу на тяжелую жизнь и вечный стресс, врачи спрашивают, когда и какой стресс переживал больной, работодатели ищут стрессоустойчивых сотрудников. Клеткам тоже не удается избежать действия стрессовых факторов, однако в некоторых случаях это даже идет им на пользу.

Восстание рабов [ ... ]

Читать полностью

Клеточные трагедии

Часть IV: кем быть?

Внутренняя жизнь клетки насыщена событиями не меньше, чем человеческая. Она полна страстей и опасностей и так же неизбежно заканчивается смертью. Полина Лосева разбирается в том, какие сюжеты встречаются в судьбах клеток и как их развитие сказывается на нас с вами. Мы подошли к ключевому событию в жизни каждого, будь то клетка или человек, — к самоопределению и выбору жизненного пути.
Добавить в закладки
Комментарии
© Ольга Степанюк

© Ольга Степанюк

«Клеточные трагедии» — это большой цикл статей о клетках. Почитайте и другие тексты об их нелегкой жизни: в них рассказывается о самоубийствах, стрессе, шоке, старости, второй молодости и — бессмертии.

Большинство клеток во взрослом организме дифференцированы, то есть являются специалистами в конкретной узкой области. И если профессионализм человека определяется набором конкретных умений, знаний и опыта, то специализация клетки зависит от ее белкового состава (умений), в роли знаний выступает набор работающих в ней генов, а опыт (как и у людей) — это история ее взаимодействий с окружением. Как организм воспитывает в клетке профессионала? Можем ли мы позаимствовать у него какую-нибудь педагогическую методику для современных клеточных технологий? Давайте смотреть.

Сужаем кругозор [ ... ]

Читать полностью