Все новости

Оксид меди и серебра поможет отыскать взрывчатку и наркотики

Российские ученые создали смешанный нанокомпозит, обладающий рядом удивительных свойств.

Ученым из из Института катализа имени Г. К. Борескова Сибирского отделения РАН совместно с Лабораторией рентгеновской дифрактометрии Новосибирского государственного университета удалось получить смешанный оксид меди и серебра. Свойства нового композита настолько специфичны, что обещают ему широкое применение в производстве самых разных продуктов — от пластиковых бутылок до взрывчатки. Об этом сообщает сайт Сибирского отделения РАН.

Одна из наиболее важных отраслей, где применяются смешанные оксиды, — это каталитическая химия. Разные металлы различным образом создают соединения, содержащие кислород (оксиды). Если в одном соединении кислород связан сразу двумя металлами, его свойства резко отличаются, от тех, что можно наблюдать в обычных оксидах металлов (той же ржавчине). Например, такой кислород может значительно активнее реагировать с внешними соединениями, то есть быть куда более эффективным катализатором, в том числе при низких температурах.

Чем ниже температура того или иного массового технологического процесса, тем меньше затраты энергии на его поддержание. Например, на такой реакции, как окисление этилена, основано получение этиленгликоля, полиэтиленгликолей (из них делают антифризы, тормозные жидкости, моющие средства). Чем ниже температура и чем быстрее идут такие реакции, тем дешевле и конкурентоспособнее конечные продукты. А в их числе даже косметика, парфюмерия, ПЭТ-бутылки и ряд взрывчаток.

На первом этапе ученые изучили каталитические свойства обычного оксида CuO в его наноразмерном состоянии. Выяснилось, что в зависимости от размера «зерна» CuO каталитический эффект оксида меди заметно разнится. Крупные кристаллы хорошо окисляли только при температуре 150—200 градусов Цельсия, а наноразмерные частицы — уже при комнатной температуре. Более детальное исследование показало, что в наноразмерном оксиде меди соотношение атомов соответствовало формуле не CuO, а уже Cu4O3, благодаря чему кислород имел аномально высокую реакционную способность.

Далее химики ввели в оксид второй металл — серебро, заменив им одновалентную медь. Так был получен смешанный оксид серебра и меди Ag2Cu2O3. Его каталитические свойства оказались еще лучше, чем у медного, сравнимыми с современными катализаторами окислительного типа на базе палладия, платины или золота. Однако и серебро, и тем более медь намного дешевле этих благородных металлов.

Попутно выяснилось, что если нагревать Ag2Cu2O3, то выделяются наночастицы серебра размерами 5—15 нанометров. Причем происходило это только вдоль определенных направлений в кристалле. Из этого следует, что на основе таких двойных оксидов можно создавать ориентированные металл-оксидные наноструктуры и нанокомпозиты.

В теории нанокомпозит на основе смешанного оксида должен демонстрировать эффект гигантского комбинационного рассеяния света на адсорбированных молекулах. За счет этого спектральный сигнал может усиливаться в миллион и более раз. Данный эффект был бы весьма полезен при создании высокочувствительных аналитических методов поиска ничтожно малых концентраций разнообразных веществ — например, взрывчатки и наркотиков в аэропортах.