Текст уведомления здесь

Global research team locates vulnerability of advanced semiconductors for nanoelectronics

Researchers from Russia, Germany, and Venezuela have identified the vulnerability of a 2D semiconductor — gallium selenide — in the air, which makes it possible to create superconducting nanoelectronics based on this material. The results of the study have been published in the journal Semiconductor Science and Technology.
Добавить в закладки
Комментарии

2D semiconductors consist of one or several atomic layers. Due to their portability, electro-conductivity and durability, they can serve as a solid foundation for nanoelectronics. Moreover, they also hold great prospects for use in opto-electronics, but in that case, they must consist of a material which is capable of creating a large flow of electrons when irradiated with light. One such material is gallium selenide.

According to the study’s co-author, Professor at the Department of Laser and Light Technique of TPU, Raul Rodriguez, all attempts to create a real electronic device based on gallium selenide have not been successful so far. When coming into contact with the air, the material is rapidly oxidized and loses its electric conductivity, required for creating nanoelectronic devices. «Our results show that the oxidation of gallium selenide is a very fast process. The material reaches its oxidized state almost immediately after coming into contact with the air,» the researchers commented.

It turns out that in order for gallium selenide to sustain its properties it must be placed in a vacuum or inert medium. For example, it can be placed in capsular devices which are produced in a vacuum, then covered with a protective air-tight layer.

This technique can also be applied in constructing new opto-electronics, detectors, light sources, and solar cells. The minute sizes of these future devices provide an especially high quantum efficiency, that is the capability of creating large flows of electrons under small external impact.

Добавить в закладки
Комментарии
Вам понравилась публикация?
Расскажите, что вы думаете, и мы подберем подходящие материалы